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 σ

One-more Unforgeability:


• user can obtain at most 
signatures from  sessions 
with distinct messages
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Our Contribution

• Tight blind signatures in pairing-free groups 

- secure under DDH with  loss


- extension: non-programmable ROM


- extension: predicate blindness

log(QS)
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Our Contribution
Blind Signatures in Pairing-free Groups

Scheme Signature Size Communication 
Size

Security Assumption Loss

[CKMTZ23] AGM + ROM DL

[TZ22] AGM + ROM DL

[KR25] ROM DDH

3(𝔾/ℤp)

4ℤp

6(𝔾/ℤp)

6(𝔾/ℤp) 19(𝔾/ℤp)

6(𝔾/ℤp) O(1)

O(QH)

O(QS)
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Our Contribution

• First tight BS without AGM

Blind Signatures in Pairing-free Groups

Scheme Signature Size Communication 
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Security Assumption Loss
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Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification               (e.g., BLS)

- employ ∑-protocol for verification instead of pairing

- issue ∑-protocol à la Schnorr

- result: pairing-free blind signature without AGM

loss is Ω(Q)
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• Our Techniques:

- employ tight pairing-based SPS                  (not blinding-friendly)

- translate SPS [AHNOP17] into -protocol Σ Π𝖲𝖯𝖲

- issue  interactively à la [CTZ24] homomorphicallyΠ𝖲𝖯𝖲

      compile via Fiat-Shamir→

- argue security via adaptive partitioning [Hof17,AHNOP17]
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[AHNOP17] via Fiat-Shamir
Adaptive partitioning

•                                                                    𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

xi Zi

• adaptive partitioning [Hof17]:


- in log(Q) hybrids: enforce conditions on forgery


- in the end: statistically hard to forge

UF argument relies on soundness of

the proof systems

-   or   is DDH tuple  

-   or  

R0 = {x0G + x1 = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

M

issue:  statement contains M
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“open commitments”

“randomize 
homomorphically”

“Commit to in dual-mode 
commitments”
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