
Tightly-Secure Blind Signatures in Pairing-Free Groups

Nicholas Brandt

Dennis Hofheinz

Michael Klooß

Michael Reichle

ETH Zurich

ETH Zurich

KIT

ETH Zurich

Blind Signatures

signer user

vk, sk vk, m

 σ

Correctness:

• honest signatures verify

2

/162

Blind Signatures

signer user

vk, sk vk, m

 σ

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

2

/162

Blind Signatures

signer user

vk, sk vk, m

 σ

One-more Unforgeability:

• user can obtain at most
signatures from sessions
with distinct messages

QS
QS

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

2

/162

Our Contribution

• Tight blind signatures in pairing-free groups

- secure under DDH with loss

- extension: non-programmable ROM

- extension: predicate blindness

log(QS)

/163

Our Contribution
Blind Signatures in Pairing-free Groups

Scheme Signature Size Communication
Size

Security Assumption Loss

[CKMTZ23] AGM + ROM DL

[TZ22] AGM + ROM DL

[KR25] ROM DDH

3(𝔾/ℤp)

4ℤp

6(𝔾/ℤp)

6(𝔾/ℤp) 19(𝔾/ℤp)

6(𝔾/ℤp) O(1)

O(QH)

O(QS)

/164

Our Contribution

• First tight BS without AGM

Blind Signatures in Pairing-free Groups

Scheme Signature Size Communication
Size

Security Assumption Loss

[CKMTZ23] AGM + ROM DL

[TZ22] AGM + ROM DL

[KR25] ROM DDH

3(𝔾/ℤp)

4ℤp

6(𝔾/ℤp)

6(𝔾/ℤp) 19(𝔾/ℤp)

6(𝔾/ℤp)

Our Work ROM DDH41(𝔾/ℤp) 83(𝔾/ℤp) O(log QS)

O(1)

O(QH)

O(QS)

/164

Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

/165

Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification (e.g., BLS)

/165

Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification (e.g., BLS)

- employ ∑-protocol for verification instead of pairing

/165

Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification (e.g., BLS)

- employ ∑-protocol for verification instead of pairing

- issue ∑-protocol à la Schnorr

/165

Overview

• Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification (e.g., BLS)

- employ ∑-protocol for verification instead of pairing

- issue ∑-protocol à la Schnorr

- result: pairing-free blind signature without AGM

loss is Ω(Q)

/165

Overview

• Our Techniques:

/166

Overview

• Our Techniques:

- employ tight pairing-based SPS (not blinding-friendly)

/166

Overview

• Our Techniques:

- employ tight pairing-based SPS (not blinding-friendly)

- translate SPS [AHNOP17] into -protocol Σ Π𝖲𝖯𝖲

/166

Overview

• Our Techniques:

- employ tight pairing-based SPS (not blinding-friendly)

- translate SPS [AHNOP17] into -protocol Σ Π𝖲𝖯𝖲

- issue interactively à la [CTZ24] homomorphicallyΠ𝖲𝖯𝖲

 compile via Fiat-Shamir→

/166

Overview

• Our Techniques:

- employ tight pairing-based SPS (not blinding-friendly)

- translate SPS [AHNOP17] into -protocol Σ Π𝖲𝖯𝖲

- issue interactively à la [CTZ24] homomorphicallyΠ𝖲𝖯𝖲

 compile via Fiat-Shamir→

- argue security via adaptive partitioning [Hof17,AHNOP17]

/166

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M
𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M
𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 σ = (S, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

/167

Blind Signatures without AGM

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 σ = (S, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌 describe relation R 𝗏𝗄 and 𝖼𝗋𝗌

OR-proof for simulation

/167

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷

/168

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷

- // dual-mode commitments to 𝖢𝖬𝖷 = (𝖢𝖬𝖷0, 𝖢𝖬𝖷1, 𝖢𝖬𝖷2) xi

/168

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷

- // dual-mode commitments to 𝖢𝖬𝖷 = (𝖢𝖬𝖷0, 𝖢𝖬𝖷1, 𝖢𝖬𝖷2) xi

• // DDH tuple 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
D

/168

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷

- // dual-mode commitments to 𝖢𝖬𝖷 = (𝖢𝖬𝖷0, 𝖢𝖬𝖷1, 𝖢𝖬𝖷2) xi

• // DDH tuple 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
D

• σ = (𝖢𝖳, π)

- // encryptions of 𝖢𝖳 = (𝖢𝖳0, 𝖢𝖳1, 𝖢𝖳2) Zi

- for relations // compiled via Fiat-Shamirπ = (π0, π1) R0, R1

/168

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

- or is DDH tuple

- or

R0 = {x0G + x1M = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

xi Zi

/169

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

- or is DDH tuple

- or

R0 = {x0G + x1M = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

xi Zi

• adaptive partitioning [Hof17]:

- in log(Q) hybrids: enforce conditions on forgery

/169

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

- or is DDH tuple

- or

R0 = {x0G + x1M = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

xi Zi

• adaptive partitioning [Hof17]:

- in log(Q) hybrids: enforce conditions on forgery

- in the end: statistically hard to forge

/169

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

- or is DDH tuple

- or

R0 = {x0G + x1M = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

xi Zi

• adaptive partitioning [Hof17]:

- in log(Q) hybrids: enforce conditions on forgery

- in the end: statistically hard to forge

UF argument relies on soundness of

the proof systems

/169

[AHNOP17] via Fiat-Shamir
Adaptive partitioning

• 𝗏𝗄 = 𝖢𝖬𝖷 𝖼𝗋𝗌 = (Di, 𝗉𝗉i, 𝗉𝗄i)i∈{0,1,2}
σ = (𝖢𝖳, π)

xi Zi

• adaptive partitioning [Hof17]:

- in log(Q) hybrids: enforce conditions on forgery

- in the end: statistically hard to forge

UF argument relies on soundness of

the proof systems

- or is DDH tuple

- or

R0 = {x0G + x1 = Z0} {D }

R1 = {Z0 = Z1} x2G = Z2

M

issue: statement contains M

/1610

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

randomize 𝖢𝖳

/1611

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

randomize 𝖢𝖳

 describe relations 𝗏𝗄 and 𝖼𝗋𝗌 R0 and R1

/1611

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

proves R0 and R1
randomize 𝖢𝖳

 describe relations 𝗏𝗄 and 𝖼𝗋𝗌 R0 and R1

/1611

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

proves R0 and R1

issue: cannot evaluate ∑-protocol

 without knowing M

randomize 𝖢𝖳

 describe relations 𝗏𝗄 and 𝖼𝗋𝗌 R0 and R1

/1611

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖢𝗈𝗆(𝖬; 𝗋)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

randomize 𝖢𝖳

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

1. user encrypts M with known ()

2. signer homomorphically simulates ∑-protocol

𝗉𝗄𝖴, 𝗌𝗄𝖴

 describe relations 𝗏𝗄 and 𝖼𝗋𝗌 R0 and R1

proves R0 and R1

/1612

“decrypt R”
“evaluate homomorphically

over C”

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖤𝗇𝖼𝗉𝗄𝖴

(𝖬; r)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

randomize 𝖢𝖳

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

/1613

“decrypt R”
“evaluate homomorphically

over C”

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖤𝗇𝖼𝗉𝗄𝖴

(𝖬; r)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (𝖢𝖳, π)

compile proof via Fiat-Shamirπ = (R, c, z)

randomize 𝖢𝖳

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

issue: reveals too much
information if session aborts

𝖢𝖳

/1613

“open commitments”

“randomize
homomorphically”

“Commit to in dual-mode
commitments”

Blind Signatures from Fiat-Shamir

signer user

𝗏𝗄, 𝗌𝗄 𝗏𝗄, M

 C
 C = 𝖤𝗇𝖼𝗉𝗄𝖴

(𝖬; r)

 𝖢𝖳

 𝖢𝖳 = (𝖤𝗇𝖼𝗉𝗄i
(Zi))i

 σ = (S, π)

compile proof via Fiat-Shamirπ = (R, c, z)

randomize 𝖢𝖳

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

𝖼𝗋𝗌

/1614

Summary

• signer issues [AHNOP17] signatures via ∑-protocol

/1615

Summary

• signer issues [AHNOP17] signatures via ∑-protocol

• this happens behind additional homomorphic layers

/1615

Summary

• signer issues [AHNOP17] signatures via ∑-protocol

• this happens behind additional homomorphic layers

- Blindness: hide message in encryption simulate ∑-protocol→

/1615

Summary

• signer issues [AHNOP17] signatures via ∑-protocol

• this happens behind additional homomorphic layers

- Blindness: hide message in encryption simulate ∑-protocol→

- OMUF: commit to ciphertexts in dual-mode commitments

/1615

Summary

• signer issues [AHNOP17] signatures via ∑-protocol

• this happens behind additional homomorphic layers

- Blindness: hide message in encryption simulate ∑-protocol→

- OMUF: commit to ciphertexts in dual-mode commitments

 adaptive partitioning→

/1615

Our Contribution

• First tight BS without AGM

Blind Signatures in Pairing-free Groups

Scheme Signature Size Communication
Size

Security Assumption

[CKMTZ23] AGM + ROM DL

[TZ22] AGM + ROM DL

[KR25] ROM DDH

3(𝔾/ℤp)

4ℤp

6(𝔾/ℤp)

6(𝔾/ℤp) 19(𝔾/ℤp)

6(𝔾/ℤp)

Our Work ROM DDH41(𝔾/ℤp) 83(𝔾/ℤp) log QS

1

QH

QS

/1616

