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Correctness:
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Blindness:

e signatures are unlinkable to
signing sessions

One-more Unforgeability:

e user can obtain at most (J¢

signatures from ()¢ sessions
with distinct messages



Our Contribution

 Tight blind signatures in pairing-free groups
- secure under DDH with log((Qs) loss

- extension: non-programmable ROM

- extension: predicate blindness
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Scheme Signature Size Size Security Assumption
[CKMTZ23] 3(G/Zp) 6(G/Zp) AGM + ROM DL O(Qy)
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» Starting Point: build on recent progress [CTZ24,KRW24]
- rely on blind signature with pairing-based verification (e.qg., BLS)
- employ ) -protocol for verification instead of pairing

- issue ) -protocol a la Schnorr

- result: pairing-free blind signature without AGM
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Overview

 Our Techniques:
- employ tight pairing-based SPS (not blinding-friendly)
- translate SPS [AHNOP17] into 2-protocol Ilgpg

- issue llgpg interactively a la [CTZ24] homomorphically

— compile via Fiat-Shamir

- argue security via adaptive partitioning [Hof17,AHNOP17]
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Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

signer

T = Sign(sk, C)
R = 2 . Init(X, W)

C = Com(M;r)

S = T — AdjustSig(pk, r)

compile proof 7 = (R, ¢, 7) via Fiat-Shamir

o= (3, )

OR-proof for simulation
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Adaptive partitioning

e vk = CMX
- CMX = (CMX,,CMX,,CMX,) // dual-mode commitments to x;
. Crs = (Di, PP pkl.) // DDH tuple D
i€{0,1,2)
e 6 =(CT,n)
-CT =(CT,,CT,CT)») // encryptions of Z,

- = (my, ;) for relations Ry, R, // compiled via Fiat-Shamir
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[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X /

. vk =CMX crs = (Di, oo pkl.> o= (CT, )
1€{0,1,2}

- Ry={xyG+x M = Z2,} or {D is DDH tuple}

 adaptive partiti

UF argument relies on soundness of
- in log(Q) hybrid the proof systems

- In the end: stat

Issue: statement contains M
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Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

crs
vk, sk vk, M

signer

CT = (Encpki(Zi)) C = Com(M: 1)

R =X . Init(X, W) CT.R

randomize CT

—
_ ' oof 7 = (R, c, ) via Fiat-Shamir
issue: cannot evaluate ) -protocol

without knowing M

proves K, and R,

z = 2 .Resp(

=7, TT)
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Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

Crs
vk, sk vk, M

signer

CT = (Encpki(Zi)) C = Com(M: 1)

R =X . Init(X, W) CT.R

randomize CT
proves K, and R,

: ia Fiat-Shamir
. ' 1. user encrypts M with known (pk,, sk)) -

» 2. signer homomorphically simulates ) -protocol
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Blind Signatures from Fiat-Shamir
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Blind Signatures from Fiat-Shamir

Crs
vk, sk vk, M

signer user

C

DU —— N o TN (0

CT = (Encpki(Zi)).
R = 2. Init(X, W) CLR

“evaluate homomorphically randomize CT
over C”

“decrypt R”

C

e
f 7 = (R, ¢, 2) via Fiat-Shamir
issue: CT reveals too much

iInformation if session aborts )

z = 2.Resp(c
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vk, sk

“Commit to in dual-mode
commitments”

CT = (Encpki(Zi)).
R = 2. Init(X, W)

z = 2 .Resp(c)

CrsS

“open commitments”

<
—_———
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Blind Signatures from Fiat-Shamir

vk, M

C — EnCpkU(M; }’)

“randomize
homomorphically”

randomize CT

compile proof 7 = (R, ¢, 7) via Fiat-Shamir

o= (3, )
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