Tightly-Secure Blind Signatures in Pairing-Free Groups

Nicholas Branat ETH Zurich
Dennis Hofheinz ETH Zurich
Michael Kloof3 KIT

Michael Reichle ETH Zurich




Blind Signatures

Correctness:

vk. sk VK, M

* honest signatures verity




Blind Signatures

vk, sk vk, m Correctness:

* honest signatures verity

Blindness:

e signatures are unlinkable to
signing sessions

2/16



Blind Signatures

vk, sk

vk, m

2/16

Correctness:

* honest signatures verify

Blindness:

e signatures are unlinkable to
signing sessions

One-more Unforgeability:

e user can obtain at most (J¢

signatures from ()¢ sessions
with distinct messages



Our Contribution

 Tight blind signatures in pairing-free groups
- secure under DDH with log((Qs) loss

- extension: non-programmable ROM

- extension: predicate blindness

3/16



Our Contribution

Blind Signatures in Pairing-free Groups

Communication

Scheme Signature Size Size Security Assumption
[CKMTZ23] B(G/ZP) 6(G/Zp) AGM + ROM DL O(Qy)
[TZ22] 47, 6(G/Z,) AGM + ROM DL 0(1)
[KR25] 6(G/Z,) 19(G/2,) ROM DDH O(Qy)

4/16




Our Contribution

Blind Signatures in Pairing-free Groups

* First tight BS without AGM

Communication

Scheme Signature Size Size Security Assumption
[CKMTZ23] 3(G/Zp) 6(G/Zp) AGM + ROM DL O(Qy)
[TZ22] 47, 6(G/Z,) AGM + ROM DL O(1)
[KR25] 6(G/Z,) 19(G/2,) ROM DDH O(Qy)
Our Work 41(G/Z,) 83(G/Z,) ROM DDH O(log Qg)

4/16




Overview

» Starting Point: build on recent progress [CTZ24,KRW24]

5/16



Overview

» Starting Point: build on recent progress [CTZ24,KRW24]

- rely on blind signature with pairing-based verification (e.qg., BLS)

5/16



Overview

» Starting Point: build on recent progress [CTZ24,KRW24]
- rely on blind signature with pairing-based verification (e.qg., BLS)

- employ ) -protocol for verification instead of pairing

5/16



Overview

» Starting Point: build on recent progress [CTZ24,KRW24]
- rely on blind signature with pairing-based verification (e.qg., BLS)
- employ ) -protocol for verification instead of pairing

- issue ) -protocol a la Schnorr

5/16



Overview

» Starting Point: build on recent progress [CTZ24,KRW24]
- rely on blind signature with pairing-based verification (e.qg., BLS)
- employ ) -protocol for verification instead of pairing

- issue ) -protocol a la Schnorr

- result: pairing-free blind signature without AGM

5/16



Overview

 Our Techniques:



Overview

 Our Techniques:

- employ tight pairing-based SPS (not blinding-friendly)

6/16



Overview

 Our Techniques:
- employ tight pairing-based SPS (not blinding-friendly)

- translate SPS [AHNOP17] into 2-protocol Ilgpg

6/16



Overview

 Our Techniques:
- employ tight pairing-based SPS (not blinding-friendly)
- translate SPS [AHNOP17] into 2-protocol Ilgpg

- issue llgpg interactively a la [CTZ24] homomorphically

— compile via Fiat-Shamir

6/16



Overview

 Our Techniques:
- employ tight pairing-based SPS (not blinding-friendly)
- translate SPS [AHNOP17] into 2-protocol Ilgpg

- issue llgpg interactively a la [CTZ24] homomorphically

— compile via Fiat-Shamir

- argue security via adaptive partitioning [Hof17,AHNOP17]

6/16



Blind Signatures without AGM

Crs
vk, sk vk, M




Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M




Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

C

— C = Com(M;r)

T = Sign(sk, C)
T

—_—



Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

T = Sign(sk, C) C = Com(M;r)

— > | § =T - AdjustSig(pk, r)



Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

T = Sign(sk, C) C = Com(M;r)
R = 2 . Init(X, W) T,R
-7 S = T — AdjustSig(pk, r)
C

z = 2 .Resp(c) Z



Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

T = Sign(sk, C) C = Com(M;r)
R = 2. Init(CX, W) T,R
-7 S = T — AdjustSig(pk, r)
C
4—
z = 2 .Resp(c) Z

> | oc=,n)



Blind Signatures without AGM

vk and crs describe relation R cre

vk, sk vk, M

signer

T = Sign(sk, C)
R = 2 . Init(X, W)

C = Com(M;r)

S = T — AdjustSig(pk, r)

compile proof 7 = (R, ¢, 7) via Fiat-Shamir

o= (3, )

OR-proof for simulation



[AHNOP17] via Fiat-Shamir

Adaptive partitioning

e vk = CMX



[AHNOP17] via Fiat-Shamir

Adaptive partitioning

« vk = CMX
- CMX = (CMX,,CMX,,CMX,) // dual-mode commitments to x;

8/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning

« vk = CMX
- CMX = (CMX,,CMX,,CMX,) // dual-mode commitments to x;
. Crs = (Di, PP, pkl.) // DDH tuple D

1€{0,1,2}

8/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning

e vk = CMX
- CMX = (CMX,,CMX,,CMX,) // dual-mode commitments to x;
. Crs = (Di, PP pkl.) // DDH tuple D
i€{0,1,2)
e 6 =(CT,n)
-CT =(CT,,CT,CT)») // encryptions of Z,

- = (my, ;) for relations Ry, R, // compiled via Fiat-Shamir

8/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X /

. vk =CMX crs = (Di, PP pkl.) o= (CT, )
1€{0,1,2}

- Ry={xG+x M =2,} or {Dis DDH tuple}

9/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X /

. vk =CMX crs = (Di, PP pkl.) o= (CT, )
1€{0,1,2}

- Ry={xG+x M =2,} or {Dis DDH tuple}
- R, ={Z,=2,} or x,G =12,
 adaptive partitioning [Hof17]:

- in 1og(Q) hybrids: enforce conditions on forgery

9/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X V4

. vk =CMX crs = (Dl., PP pkl.) o= (CT, )
1€{0,1,2}

- Ry={xG+x M =2,} or {Dis DDH tuple}
- R, ={Z,=2,} or x,G =12,
 adaptive partitioning [Hof17]:

- in 1og(Q) hybrids: enforce conditions on forgery

- In the end: statistically hard to forge

9/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X /

. vk =CMX crs = (Di, oo pkl.) o= (CT, )
1€{0,1,2}

- Ry={xyG+x M =Z2,} or {Dis DDH tuple}

 adaptive partiti

UF argument relies on soundness of
- in log(Q) hybrid the proof systems

- In the end: statistically hard to forge

9/16



[AHNOP17] via Fiat-Shamir

Adaptive partitioning
X /

. vk =CMX crs = (Di, oo pkl.> o= (CT, )
1€{0,1,2}

- Ry={xyG+x M = Z2,} or {D is DDH tuple}

 adaptive partiti

UF argument relies on soundness of
- in log(Q) hybrid the proof systems

- In the end: stat

Issue: statement contains M

10/16



Blind Signatures from Fiat-Shamir

Crs
vk, sk vk, M

CT = (Encpki(Zi)) C = Com(M: 1)
R =3 Init(X, W) CTR

randomize CT

4—
compile proof 7 = (R, ¢, 7) via Fiat-Shamir

z = 2 .Resp(c) Z

- | oc=(CT,n)



Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

crs
vk, sk vk, M

CT = (Encpki(Zi)).
R = 2 . Init(X, W) CLR

C = Com(M;r)

randomize CT

4—
compile proof 7 = (R, ¢, 7) via Fiat-Shamir

z = 2 .Resp(c) Z

- | oc=(CT,n)



Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

crs
vk, sk vk, M

signer

CT = (Encpki(Zi)). C = Com(M: 1)

R =X . Init(X, W)

randomize CT
proves K, and R,

C
4—
compile proof 7 = (R, ¢, 7) via Fiat-Shamir
V4

- | oc=(CT,n)



Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

crs
vk, sk vk, M

signer

CT = (Encpki(Zi)) C = Com(M: 1)

R =X . Init(X, W) CT.R

randomize CT

—
_ ' oof 7 = (R, c, ) via Fiat-Shamir
issue: cannot evaluate ) -protocol

without knowing M

proves K, and R,

z = 2 .Resp(

=7, TT)

11/16



Blind Signatures from Fiat-Shamir

vk and crs describe relations Ry and R,

Crs
vk, sk vk, M

signer

CT = (Encpki(Zi)) C = Com(M: 1)

R =X . Init(X, W) CT.R

randomize CT
proves K, and R,

: ia Fiat-Shamir
. ' 1. user encrypts M with known (pk,, sk)) -

» 2. signer homomorphically simulates ) -protocol

12/16



Blind Signatures from Fiat-Shamir

Crs
vk, sk vk, M

CT = (Encpki(Zi)) C =Enc, (M;r)

l
R=2.Init(X, W
( P ) C-I: R udecrypt Ru
“evaluate homomorphically randomize CT
over C”
C
4—
compile proof 7 = (R, ¢, 7) via Fiat-Shamir
z = 2 .Resp(c) Z

> | c=(CT,n)



Blind Signatures from Fiat-Shamir

Crs
vk, sk vk, M

signer user

C

DU —— N o TN (0

CT = (Encpki(Zi)).
R = 2. Init(X, W) CLR

“evaluate homomorphically randomize CT
over C”

“decrypt R”

C

e
f 7 = (R, ¢, 2) via Fiat-Shamir
issue: CT reveals too much

iInformation if session aborts )

z = 2.Resp(c

13/16



vk, sk

“Commit to in dual-mode
commitments”

CT = (Encpki(Zi)).
R = 2. Init(X, W)

z = 2 .Resp(c)

CrsS

“open commitments”

<
—_———

14/16

Blind Signatures from Fiat-Shamir

vk, M

C — EnCpkU(M; }’)

“randomize
homomorphically”

randomize CT

compile proof 7 = (R, ¢, 7) via Fiat-Shamir

o= (3, )



Summary

 signer issues [AHNOP17] signatures via ) -protocol

15/16



Summary

 signer issues [AHNOP17] signatures via ) -protocol

» this happens behind additional homomorphic layers

15/16



Summary

 signer issues [AHNOP17] signatures via ) -protocol

» this happens behind additional homomorphic layers

- Blindness: hide message in encryption — simulate ) -protocol

15/16



Summary

 signer issues [AHNOP17] signatures via ) -protocol

» this happens behind additional homomorphic layers

- Blindness: hide message in encryption — simulate ) -protocol

- OMUF: commit to ciphertexts in dual-mode commitments

15/16



Summary

 signer issues [AHNOP17] signatures via ) -protocol

» this happens behind additional homomorphic layers

- Blindness: hide message in encryption — simulate ) -protocol

- OMUF: commit to ciphertexts in dual-mode commitments

— adaptive partitioning

15/16



Our Contribution

Blind Signatures in Pairing-free Groups

* First tight BS without AGM

Communication

Scheme Signature Size Size Security Assumption
[CKMTZ23] 3(G/Z,) 6(G/Z,) AGM + ROM DL Oy
[TZ22] 47, 6(G/Z,) AGM + ROM DL 1
[KR25] 6(G/Z,) 19(G/2,) ROM DDH Oy
Our Work 41(G/Z,) 83(G/Z,) ROM DDH log Qg

16/16




