
Blind Signatures from Proofs of Inequality
Michael Klooß

Michael Reichle

KIT

ETH Zurich

Our Contribution

• Bridge gap in performance between AGM and AGM-free schemes

- pairing-free groups

- standard assumptions in ROM

Blind Signatures

ROMAGM + ROM
DDH

Our Contribution

• Bridge gap in performance between AGM and AGM-free schemes

Blind Signatures

Scheme* Signature Size Communication
Size Security Assumption

[CKMTZ23] AGM + ROM DL

[KRW24] ROM DDH

1𝔾 + 2ℤp

2𝔾 + 5ℤp

2𝔾 + 4ℤp

𝗉𝗈𝗅𝗒(λ)

Our Work ROM DDH1𝔾 + 5ℤp 10𝔾 + 9ℤp

*representatives for compact AGM and AGM-free blind signatures

Blind Signatures

signer user

pk, sk pk, m

 σ

One-more Unforgeability:

• user can obtain at most
signatures from sessions
with distinct messages

ℓ
ℓ

Blindness:

• signatures are unlinkable to
signing sessions

Correctness:

• honest signatures verify

Our Techniques
Pairing-free blind signature in the ROM

• Starting Point: build on recent progress [CTZ24,KRW24]

- remove reliance on NIZK for scalars in [KRW24]

• Contributions:

- employ tailored -protocol

- NIZK for group elements less communication

- bonus: smaller signatures

Π

Σ

Π →

1𝔾

5

Issuance in [KRW24]

replace pairing-based verification of

[KRS23] via FS-compiled -protocolΣ

Issuance in [KRW24]

signer user

𝗉𝗄, 𝗌𝗄 𝗉𝗄, m

 C
 C = 𝖢𝗈𝗆(𝗆; 𝗋)

 πm

 πm = 𝖯𝗋𝗈𝗏𝖾(′￼′￼C is well formed′￼′￼)

∈

 ℤp

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 σ = (S, π)

compile proof via Fiat-Shamirπ = (R, c, z)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) , R

 or is DDH tupleS = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆) D

 or is DDH tupleT = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢) D

D = (D1, D2, D3)

One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3)

 timesℓ

 succeeds if:

- verifies,

- pairwise distinct.

𝒜
(mi, σi)
mi

One-more Unforgeability
Approach of [KRW24]

• Step 1: extract to-be-signed
 from proof

- requires extracting scalars

- compute via signature on
accounting for

(mi, ri) πm,i

Ti mi
ri

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3)

 timesℓ

 succeeds if:

- verifies,

- pairwise distinct.

𝒜
(mi, σi)
mi

One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:

- verifies,

- pairwise distinct.

𝒜
(mi, σi)
mi

• Step 2: simulate transcript via
DDH-tuple

- simulate Sign-branch

- compute DDH-branch via

τΣ,i
D

d1

 or is DDH tupleT = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢) D

One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:

- verifies,

- pairwise distinct.

𝒜
(mi, σi)
mi

• Step 3: puncture on some
message

- force adversary to provide
forgery for

- never sign in simulation

𝗉𝗄
m*

m*

m*

One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:

- verifies,

- pairwise distinct.

𝒜
(mi, σi)
mi

• Soundness:

- signature on valid

 solves hard problem

S* m*

→

Our Approach
Tailored Trapdoor based on [BS02, CS03]

• Idea: craft tailored statement for Fiat-Shamir such that

- can be punctured over message extracted from is in

- is compact and linear efficient blind issuance

• Statement : inequality of encrypted messages

𝕏

𝕏 𝔾 → πm 𝔾

𝕏 →

𝕏

 does not encrypt 0C := C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)

Our Approach
Tailored Trapdoor

• Statement: does not encrypt 0

• Idea: scale decryption by (i.e., decrypt via)

C = (C0, C1) = (rG, M + rH)

y yC x = y ⋅ 𝗌𝗄

Φ(C, (x, y)) = (yH − xG
yC1 − xC0)

T

= (0
yM)

T “x is scaled decryption key”

Our Approach
Tailored Trapdoor

• Statement: does not encrypt 0

• Idea: scale decryption by (i.e., decrypt via)

• Observation:

- can reveal for

- if then

C = (C0, C1) = (rG, M + rH)

y yC x = y ⋅ 𝗌𝗄

M$:= yM ∼ U𝔾× M ≠ 0,y ← ℤ×
p

M$ ≠ 0 M ≠ 0

Φ(C, (x, y)) = (yH − xG
yC1 − xC0)

T

= (0
yM)

T

“yC decrypts to yM”

Our Approach
Tailored Trapdoor

• Statement : inequality of encrypted messages

• Puncturing: encrypt in

𝕏

M C*

 does not encrypt 0C := C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)

Our Blind Signature

signer user

𝗉𝗄 = (C*, D), 𝗌𝗄 = d1 𝗉𝗄, m

 C
 C = 𝖤𝗇𝖼(𝗉𝗄𝗋𝗈𝗆, 𝖬; 𝗋)

 πm

 πm = 𝖯𝗋𝗈𝗏𝖾(′￼′￼C is well formed′￼′￼)
 𝕏 = C* − C

 σ = π

compile proof via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎) R

 does not encrypt 0

or

 is DDH tuple

C* − C

D

D = (D1, D2, D3 = d1D2)

 does not encrypt 0

or

 is DDH tuple

C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)

D

Conclusion

• Bridge gap in performance between AGM and AGM-free schemes

Blind Signatures

Scheme(1) Signature Size(2) Communication
Size(2) Security Assumption

[CKMTZ23] 96 B 192 B AGM + ROM DL

[KRW24] 224 B 2.5 KB ROM DDH

Our Work 192 B 608 B ROM DDH

(1) representatives for compact AGM and AGM-free blind signatures

(2) assuming 256 bit groups

