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Our Contribution

• Bridge gap in performance between AGM and AGM-free schemes 

- pairing-free groups


- standard assumptions in ROM

Blind Signatures

ROMAGM + ROM
DDH



Our Contribution

• Bridge gap in performance between AGM and AGM-free schemes

Blind Signatures

Scheme* Signature Size Communication 
Size Security Assumption

[CKMTZ23] AGM + ROM DL

[KRW24] ROM DDH

1𝔾 + 2ℤp

2𝔾 + 5ℤp

2𝔾 + 4ℤp

𝗉𝗈𝗅𝗒(λ)

Our Work ROM DDH1𝔾 + 5ℤp 10𝔾 + 9ℤp

*representatives for compact AGM and AGM-free blind signatures



Blind Signatures

signer user

pk, sk pk, m

 σ

One-more Unforgeability:


• user can obtain at most 
signatures from  sessions 
with distinct messages

ℓ
ℓ

Blindness:


• signatures are unlinkable to 
signing sessions

Correctness:


• honest signatures verify



Our Techniques
Pairing-free blind signature in the ROM

• Starting Point: build on recent progress [CTZ24,KRW24]


- remove reliance on NIZK  for scalars in [KRW24]


• Contributions:


- employ tailored -protocol


- NIZK  for group elements      less communication


- bonus:  smaller signatures

Π

Σ

Π →

1𝔾

5



Issuance in [KRW24]

replace pairing-based verification of 

[KRS23] via FS-compiled -protocolΣ



Issuance in [KRW24]

signer user

𝗉𝗄, 𝗌𝗄 𝗉𝗄, m

 C
 C = 𝖢𝗈𝗆(𝗆; 𝗋)

 πm

 πm = 𝖯𝗋𝗈𝗏𝖾(′￼′￼C is well formed′￼′￼)

 
∈

 ℤp

 T

 T = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢)

 σ = (S, π)

compile proof  via Fiat-Shamirπ = (R, c, z)

 S = T − 𝖠𝖽𝗃𝗎𝗌𝗍𝖲𝗂𝗀(𝗉𝗄, 𝗋)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎)  , R

   or    is DDH tupleS = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆) D

   or    is DDH tupleT = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢) D

D = (D1, D2, D3)



One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3)

 timesℓ

 succeeds if: 

-  verifies,

-  pairwise distinct.

𝒜
(mi, σi)
mi



One-more Unforgeability
Approach of [KRW24]

• Step 1: extract to-be-signed 
 from proof 


- requires extracting scalars


- compute  via signature on  
accounting for 

(mi, ri) πm,i

Ti mi
ri

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3)

 timesℓ

 succeeds if:


-  verifies,

-  pairwise distinct.

𝒜
(mi, σi)
mi



One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:


-  verifies,

-  pairwise distinct.

𝒜
(mi, σi)
mi

• Step 2: simulate transcript  via 
DDH-tuple 


- simulate Sign-branch


- compute DDH-branch via 

τΣ,i
D

d1

   or    is DDH tupleT = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝖢) D



One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:


-  verifies,

-  pairwise distinct.

𝒜
(mi, σi)
mi

• Step 3: puncture  on some 
message       


- force adversary to provide 
forgery for 


- never sign  in simulation

𝗉𝗄
m*

m*

m*



One-more Unforgeability
Approach of [KRW24]

challenger 𝒜

pk, sk

pk

πm,i, Ci, Ti, τΣ,i = (Ri, ci, zi)

 (m1, σ1), … , (mℓ+1, σℓ+1)

D = (D1, D2, D3 = d1D2)

 timesℓ

 succeeds if:


-  verifies,

-  pairwise distinct.

𝒜
(mi, σi)
mi

• Soundness: 

- signature  on  valid


 solves hard problem

S* m*

→



Our Approach
Tailored Trapdoor based on [BS02, CS03]

• Idea: craft tailored statement  for Fiat-Shamir such that


-  can be punctured over               message extracted from  is in 


-  is compact and linear                    efficient blind issuance


• Statement : inequality of encrypted messages

𝕏

𝕏 𝔾 → πm 𝔾

𝕏 →

𝕏

 does not encrypt 0C := C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)



Our Approach
Tailored Trapdoor

• Statement:        does not encrypt 0


• Idea: scale decryption by     (i.e., decrypt   via  )

C = (C0, C1) = (rG, M + rH)

y yC x = y ⋅ 𝗌𝗄

Φ(C, (x, y)) = ( yH − xG
yC1 − xC0)

T

= ( 0
yM)

T “x is scaled decryption key”



Our Approach
Tailored Trapdoor

• Statement:        does not encrypt 0


• Idea: scale decryption by     (i.e., decrypt   via  )


• Observation:


- can reveal          for 


- if       then   

C = (C0, C1) = (rG, M + rH)

y yC x = y ⋅ 𝗌𝗄

M$ := yM ∼ U𝔾× M ≠ 0,y ← ℤ×
p

M$ ≠ 0 M ≠ 0

Φ(C, (x, y)) = ( yH − xG
yC1 − xC0)

T

= ( 0
yM)

T

“yC decrypts to yM”



Our Approach
Tailored Trapdoor

• Statement : inequality of encrypted messages


• Puncturing:  encrypt  in 

𝕏

M C*

 does not encrypt 0C := C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)



Our Blind Signature

signer user

𝗉𝗄 = (C*, D), 𝗌𝗄 = d1 𝗉𝗄, m

 C
 C = 𝖤𝗇𝖼(𝗉𝗄𝗋𝗈𝗆, 𝖬; 𝗋)

 πm

 πm = 𝖯𝗋𝗈𝗏𝖾(′￼′￼C is well formed′￼′￼)
 𝕏 = C* − C

 σ = π

compile proof  via Fiat-Shamirπ = (R, c, z)

 z = Σ . 𝖱𝖾𝗌𝗉(𝖼)

 c

 z

 R = Σ . 𝖨𝗇𝗂𝗍(𝕏, 𝕎)  R

 does not encrypt 0

or 


 is DDH tuple


C* − C

D

D = (D1, D2, D3 = d1D2)

 does not encrypt 0

or 


 is DDH tuple

C* − 𝖤𝗇𝖼(𝗉𝗄, M; 0)

D



Conclusion

• Bridge gap in performance between AGM and AGM-free schemes

Blind Signatures

Scheme(1) Signature Size(2) Communication 
Size(2) Security Assumption

[CKMTZ23] 96 B 192 B AGM + ROM DL

[KRW24] 224 B 2.5 KB ROM DDH

Our Work 192 B 608 B ROM DDH

(1) representatives for compact AGM and AGM-free blind signatures

(2) assuming 256 bit groups


