Blind Signatures from Proofs of Inequality

Michael Klooß KIT

Michael Reichle ETH Zurich

Our Contribution

Blind Signatures

- Bridge gap in performance between AGM and AGM-free schemes
 - pairing-free groups
 - standard assumptions in ROM

Our Contribution

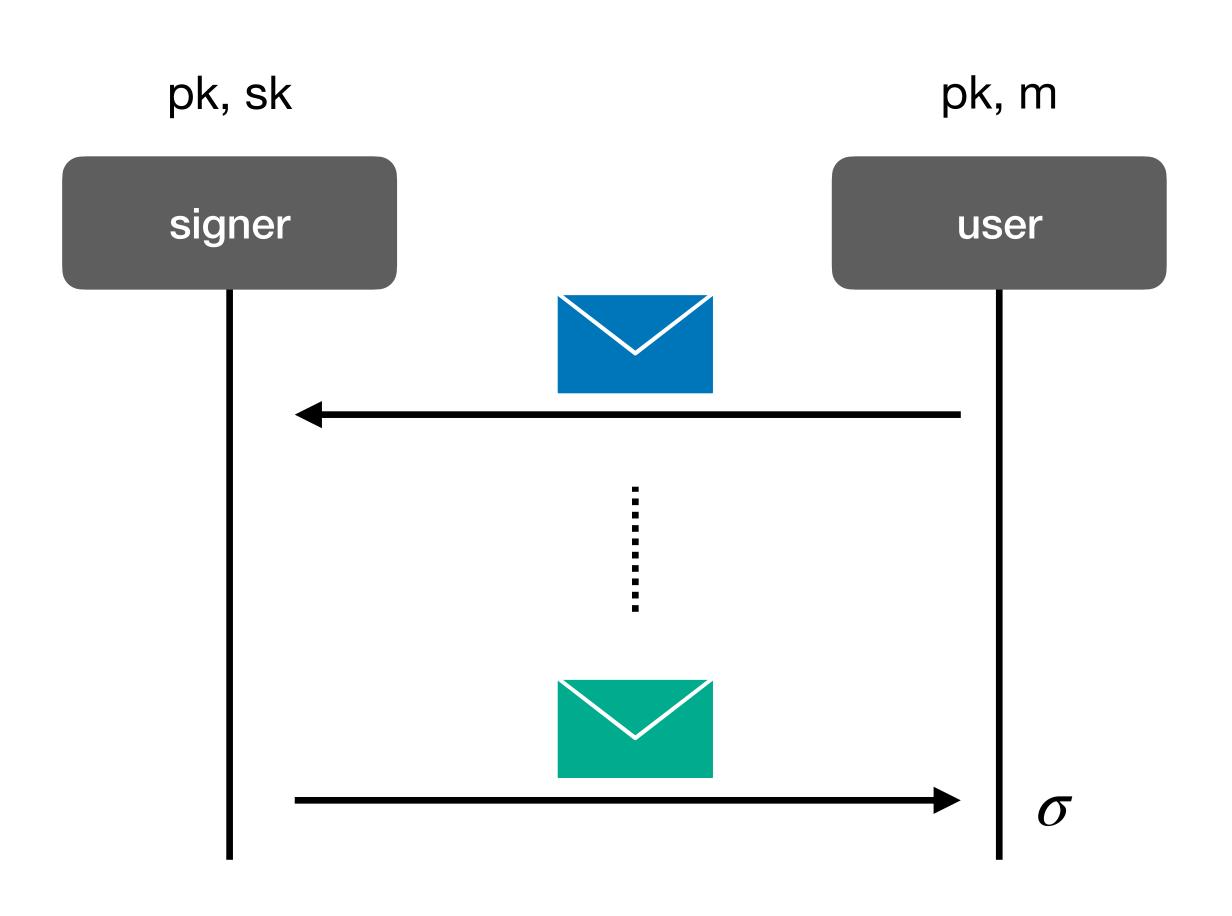
Blind Signatures

Bridge gap in performance between AGM and AGM-free schemes

Scheme*	Signature Size	Communication Size	Security	Assumption
[CKMTZ23]	$1\mathbb{G} + 2\mathbb{Z}_p$	$2\mathbb{G} + 4\mathbb{Z}_p$	AGM + ROM	DL
[KRW24]	$2\mathbb{G} + 5\mathbb{Z}_p$	$poly(\lambda)$	ROM	DDH
Our Work	$1\mathbb{G} + 5\mathbb{Z}_p$	$10G + 9\mathbb{Z}_p$	ROM	DDH

^{*}representatives for compact AGM and AGM-free blind signatures

Blind Signatures



Correctness:

honest signatures verify

Blindness:

• signatures are *unlinkable* to signing sessions

One-more Unforgeability:

• user can obtain at most ℓ signatures from ℓ sessions with distinct messages

Our Techniques

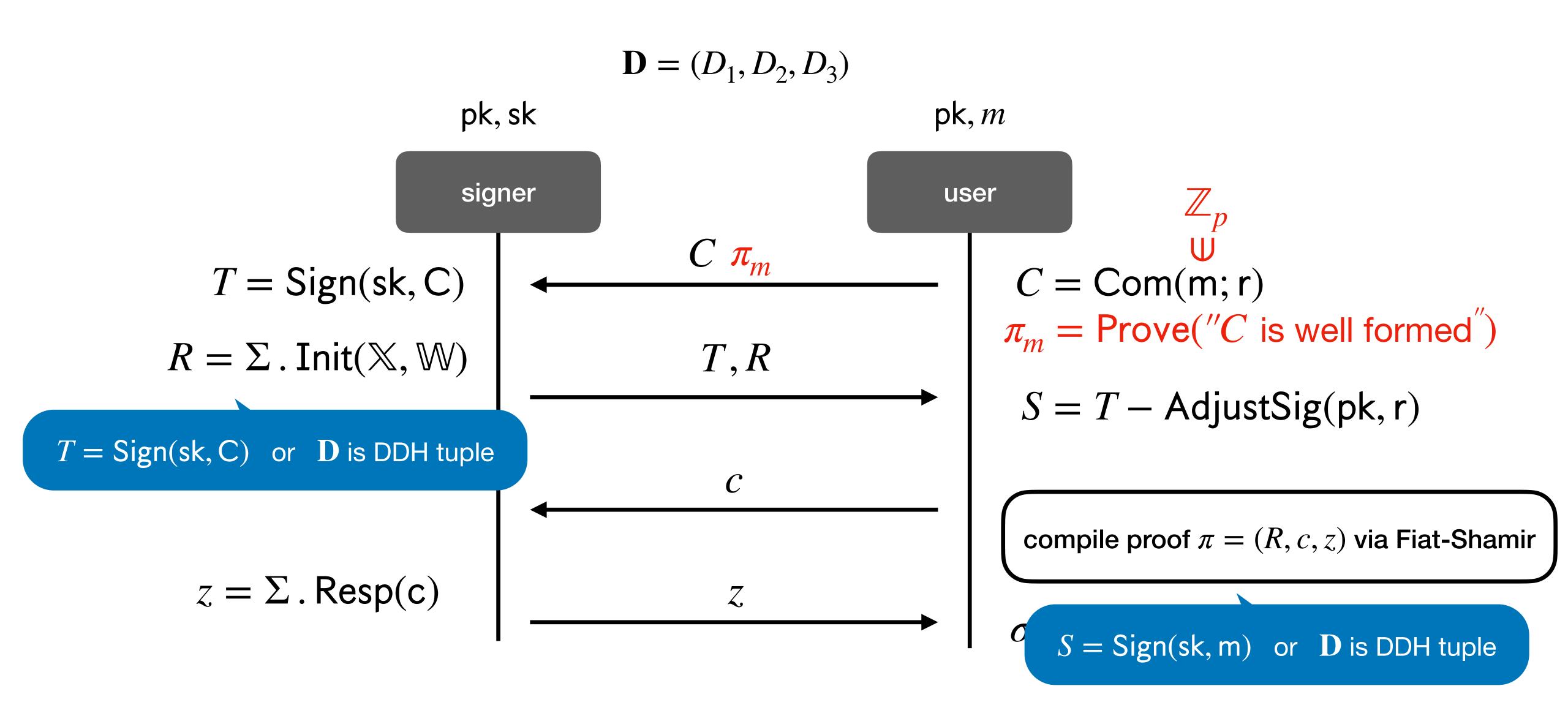
Pairing-free blind signature in the ROM

- Starting Point: build on recent progress [CTZ24,KRW24]
 - remove reliance on NIZK Π for scalars in [KRW24]
- Contributions:
 - employ tailored Σ -protocol
 - NIZK Π for group elements \rightarrow less communication
 - bonus: 1^G smaller signatures

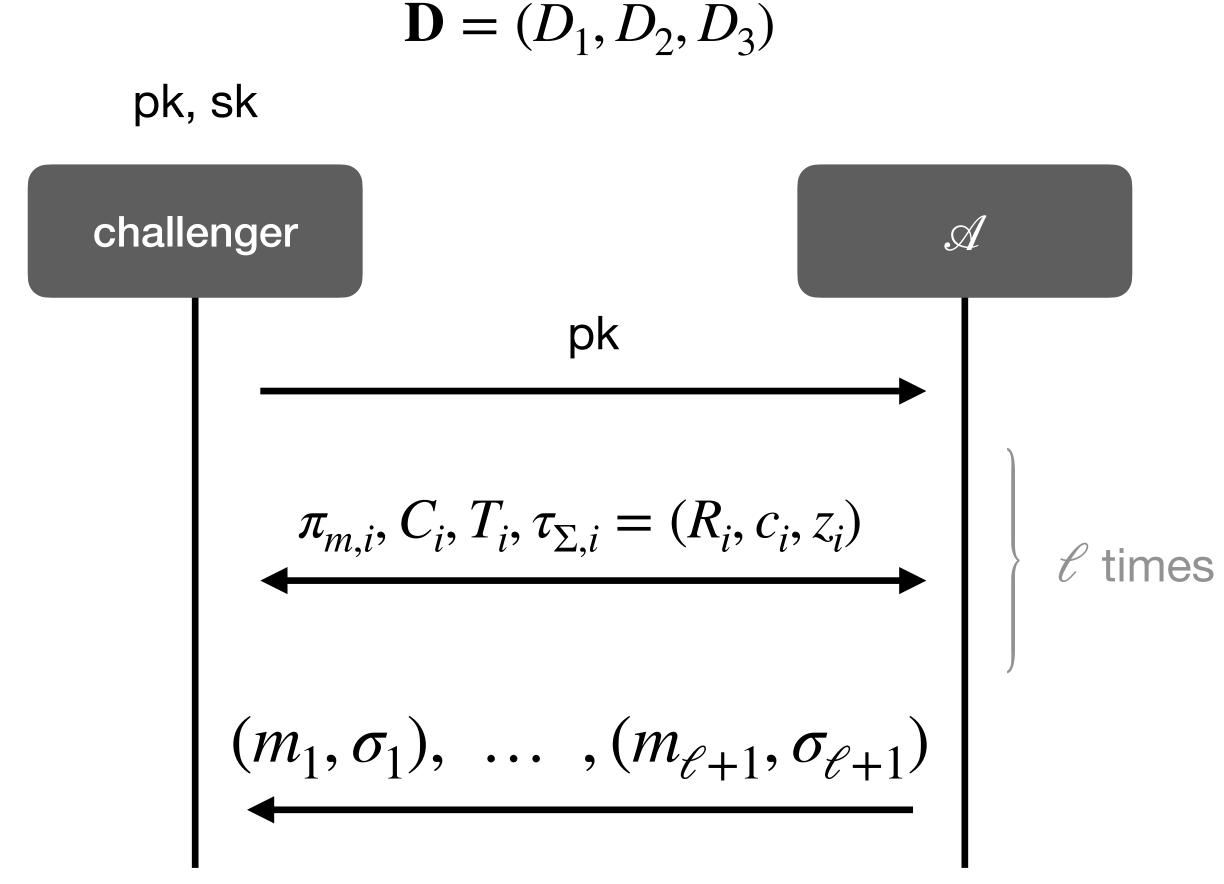
Issuance in [KRW24]

replace pairing-based verification of [KRS23] via FS-compiled Σ -protocol

Issuance in [KRW24]



Approach of [KRW24]

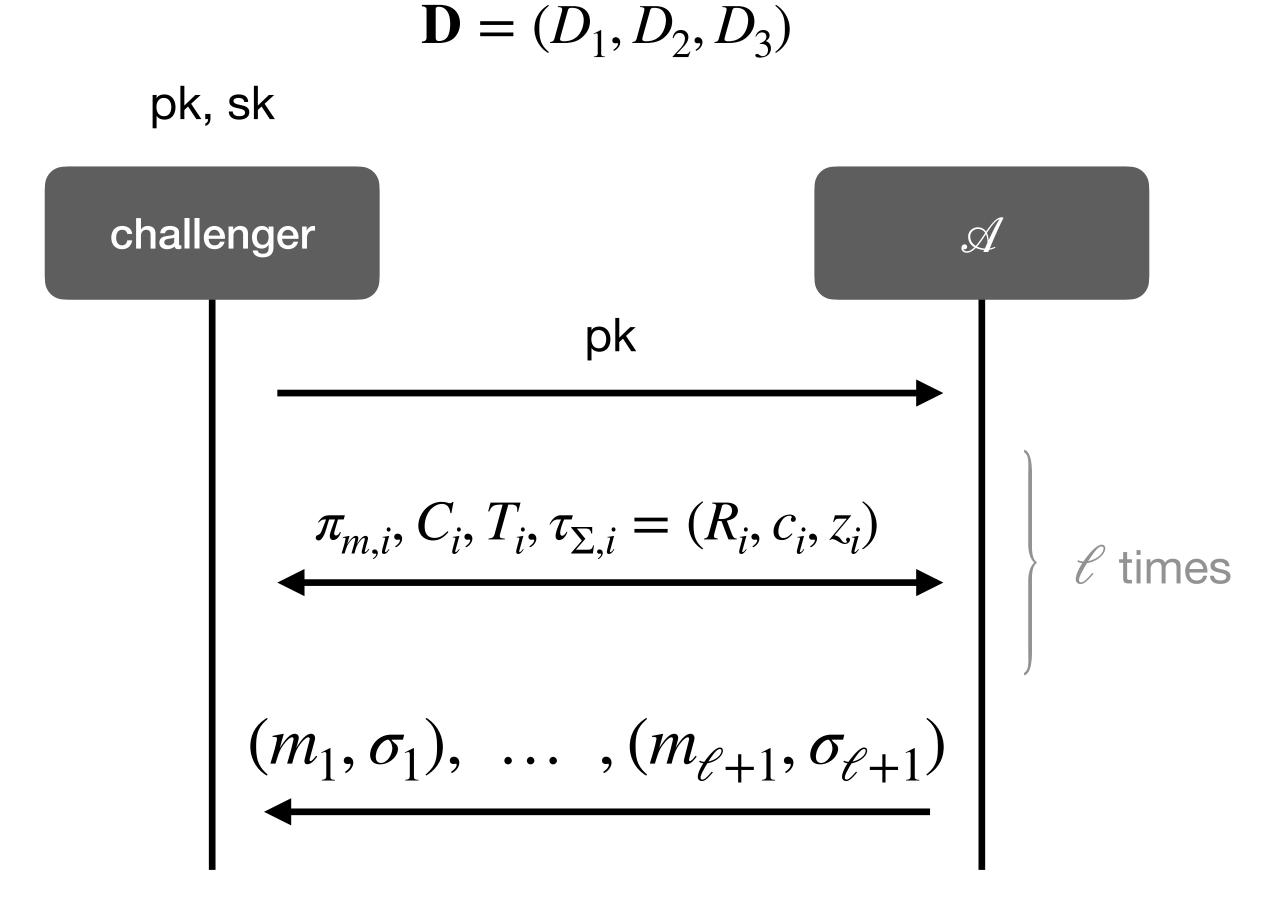


 \mathscr{A} succeeds if:

- (m_i, σ_i) verifies,
- m_i pairwise distinct.

Approach of [KRW24]

- Step 1: extract to-be-signed (m_i, r_i) from proof $\pi_{m,i}$
 - requires extracting scalars
 - compute T_i via signature on m_i accounting for r_i



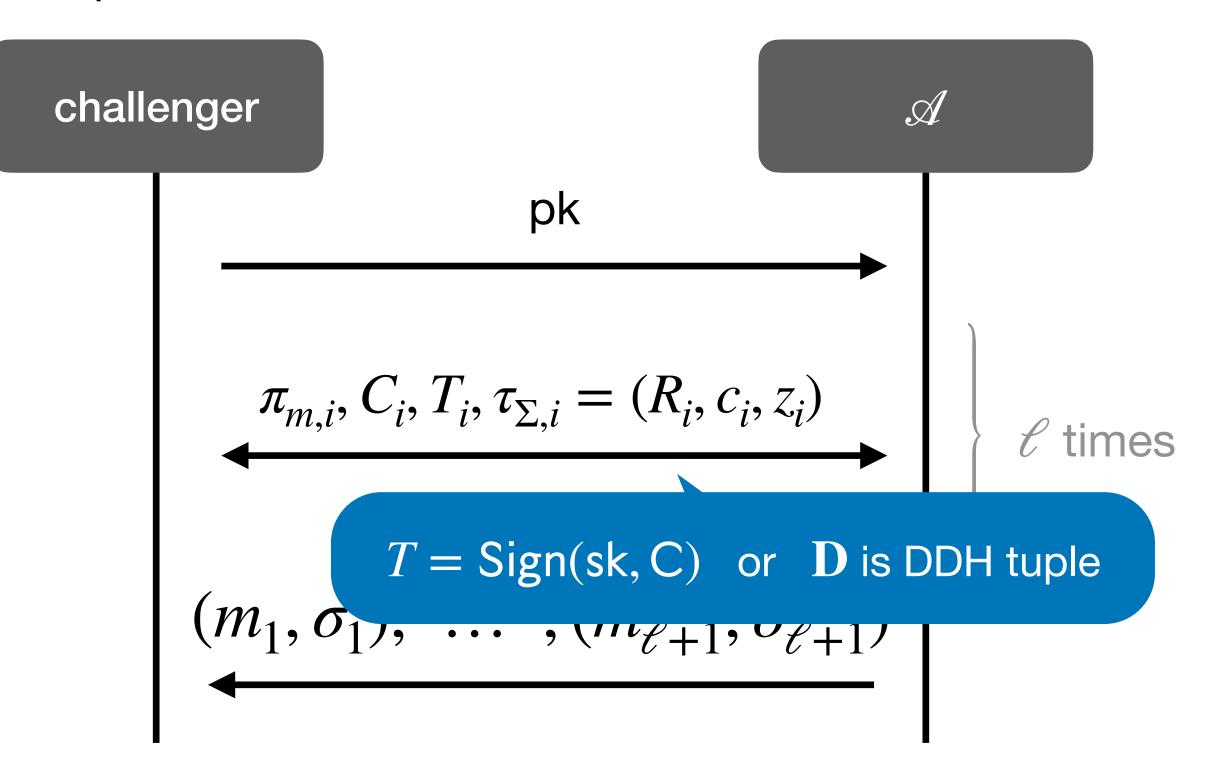
- (m_i, σ_i) verifies,
- m_i pairwise distinct.

Approach of [KRW24]

- Step 2: simulate transcript $au_{\Sigma,i}$ via DDH-tuple $\mathbf D$
 - simulate Sign-branch
 - compute DDH-branch via d_1

$$\mathbf{D} = (D_1, D_2, D_3 = d_1 D_2)$$

pk, sk



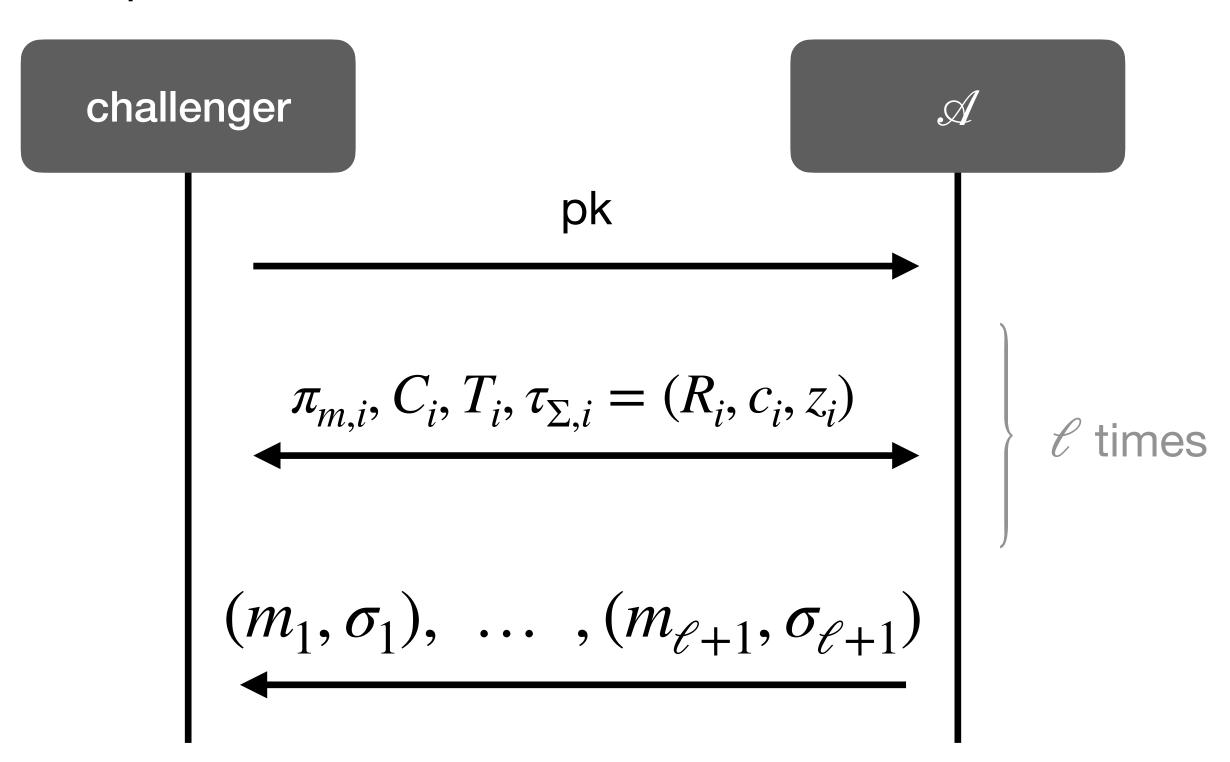
- (m_i, σ_i) verifies,
- m_i pairwise distinct.

Approach of [KRW24]

- Step 3: puncture pk on some message m^*
 - force adversary to provide forgery for m*
 - never sign m^* in simulation

$$\mathbf{D} = (D_1, D_2, D_3 = d_1 D_2)$$

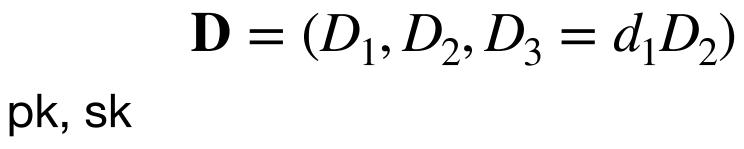
pk, sk

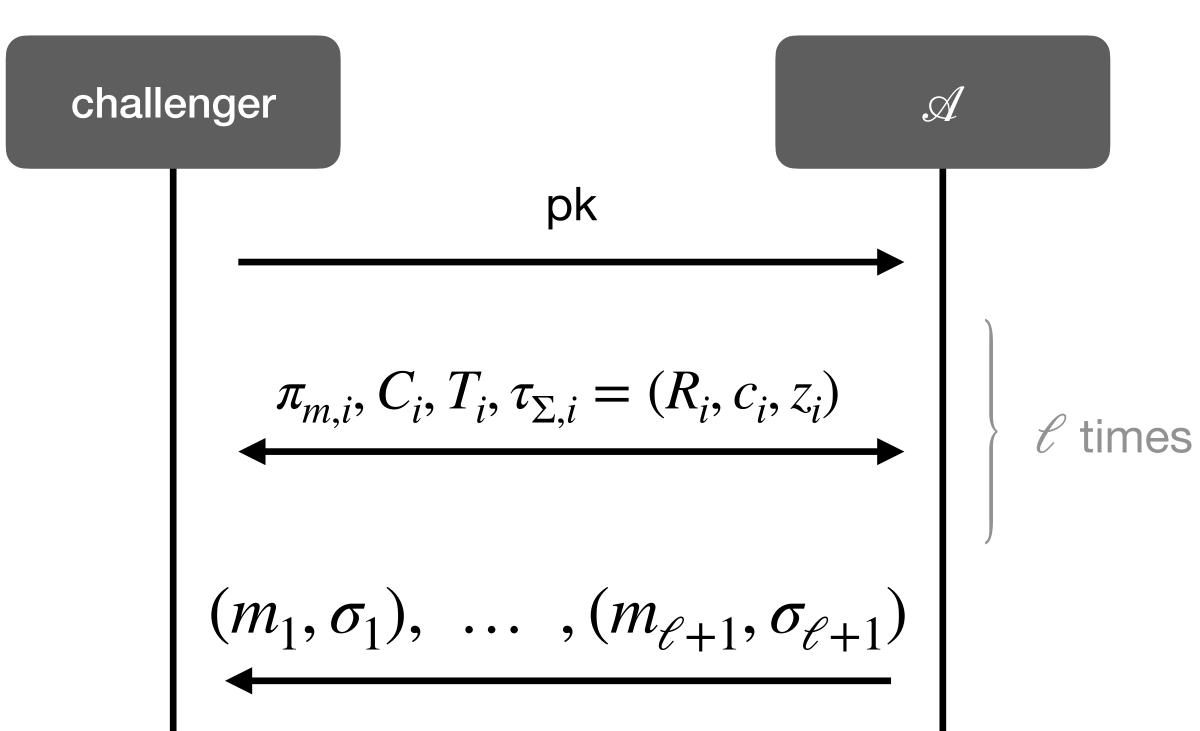


- (m_i, σ_i) verifies,
- m_i pairwise distinct.

Approach of [KRW24]

- Soundness:
 - signature S^* on m^* valid
 - → solves hard problem





- (m_i, σ_i) verifies,
- m_i pairwise distinct.

Tailored Trapdoor based on [BS02, CS03]

- Idea: craft tailored statement X for Fiat-Shamir such that
 - $\mathbb X$ can be punctured over $\mathbb G$ o message extracted from π_m is in $\mathbb G$
 - $\mathbb X$ is compact and linear o efficient blind issuance
- Statement X: inequality of encrypted messages

 $C := C^* - \text{Enc}(pk, M; 0)$ does not encrypt 0

Tailored Trapdoor

$$\Phi(C,(x,y)) = \frac{\left(yH - xG\right)^T}{yC_1 - xC_0} = \frac{0}{yM}^T \text{ "x is scaled decryption key"}$$

- Statement: $C = (C_0, C_1) = (rG, M + rH)$ does not encrypt 0
- Idea: scale decryption by y (i.e., decrypt yC via $x = y \cdot sk$)

Tailored Trapdoor

$$\Phi(C,(x,y)) = \begin{pmatrix} yH - xG \\ yC_1 - xC_0 \end{pmatrix}^T = \begin{pmatrix} 0 \\ yM \end{pmatrix}^T$$
 "yC decrypts to yM"

- Statement: $C = (C_0, C_1) = (rG, M + rH)$ does not encrypt 0
- Idea: scale decryption by y (i.e., decrypt yC via $x = y \cdot sk$)
- Observation:
 - can reveal $M_{\$} := yM \sim U_{\mathbb{G}^{\!\!\!\!\times}} \qquad \text{for } M \neq 0, y \leftarrow \mathbb{Z}_p^{\!\!\!\!\times}$
 - if $M_{\$} \neq 0$ then $M \neq 0$

Tailored Trapdoor

• Statement X: inequality of encrypted messages

$$C := C^* - \text{Enc}(pk, M; 0)$$
 does not encrypt 0

• Puncturing: encrypt M in C^*

Our Blind Signature

$$\mathbf{D} = (D_1, D_2, D_3 = d_1 D_2)$$

 $pk = (C^*, \mathbf{D}), sk = d_1$

pk, m

signer

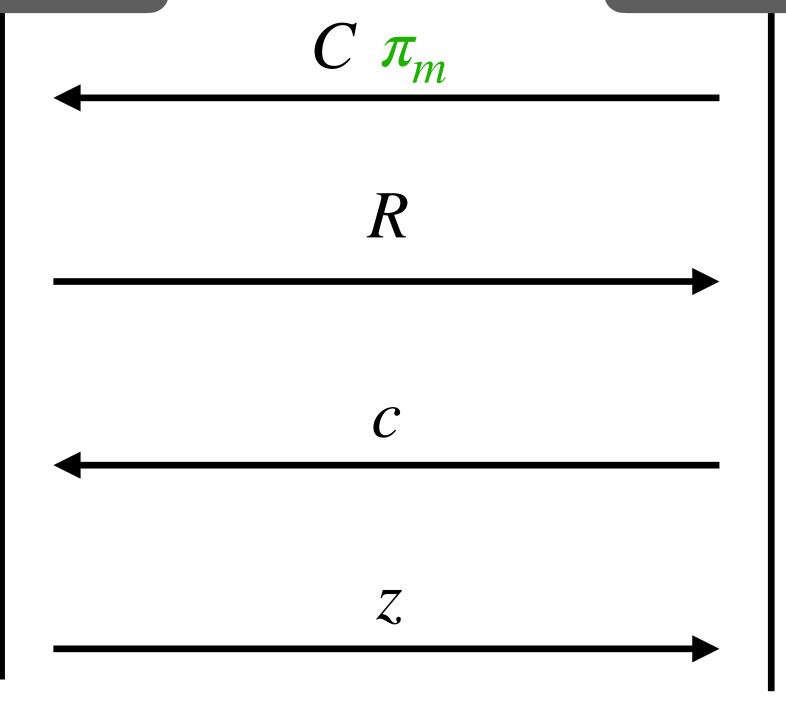
user

$$X = C^* - C$$

 $R = \Sigma . \operatorname{Init}(\mathbb{X}, \mathbb{W})$

 C^* — C does not encrypt 0 or D is DDH tuple

$$z = \Sigma$$
. Resp(c)



$$C = \text{Enc}(\text{pk}_{\text{rom}}, \text{M}; r)$$

 $\pi_m = \text{Prove}("C \text{ is well formed}")$

compile proof $\pi=(R,c,z)$ via Fiat-Shamir

 C^* – Enc(pk, M; 0) does not encrypt 0 or \mathbf{D} is DDH tuple

Conclusion

Blind Signatures

Bridge gap in performance between AGM and AGM-free schemes

Scheme ⁽¹⁾	Signature Size ⁽²⁾	Communication Size ⁽²⁾	Security	Assumption
[CKMTZ23]	96 B	192 B	AGM + ROM	DL
[KRW24]	224 B	2.5 KB	ROM	DDH
Our Work	192 B	608 B	ROM	DDH

⁽¹⁾ representatives for compact AGM and AGM-free blind signatures

⁽²⁾ assuming 256 bit groups