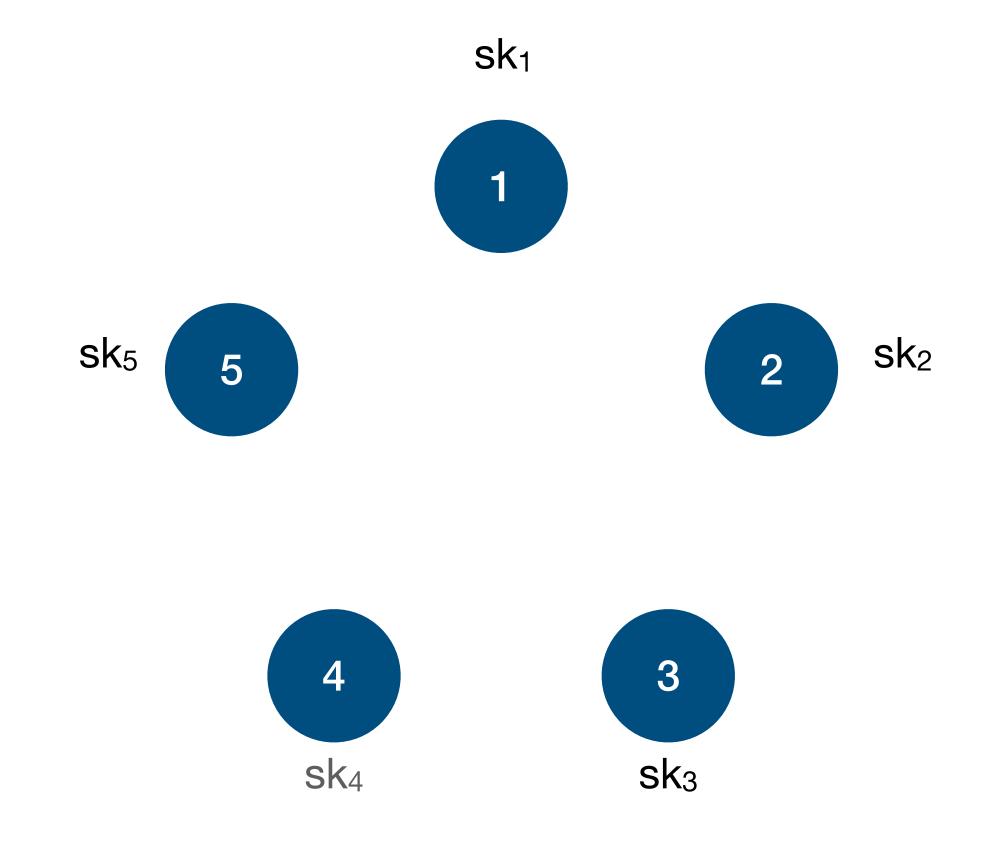
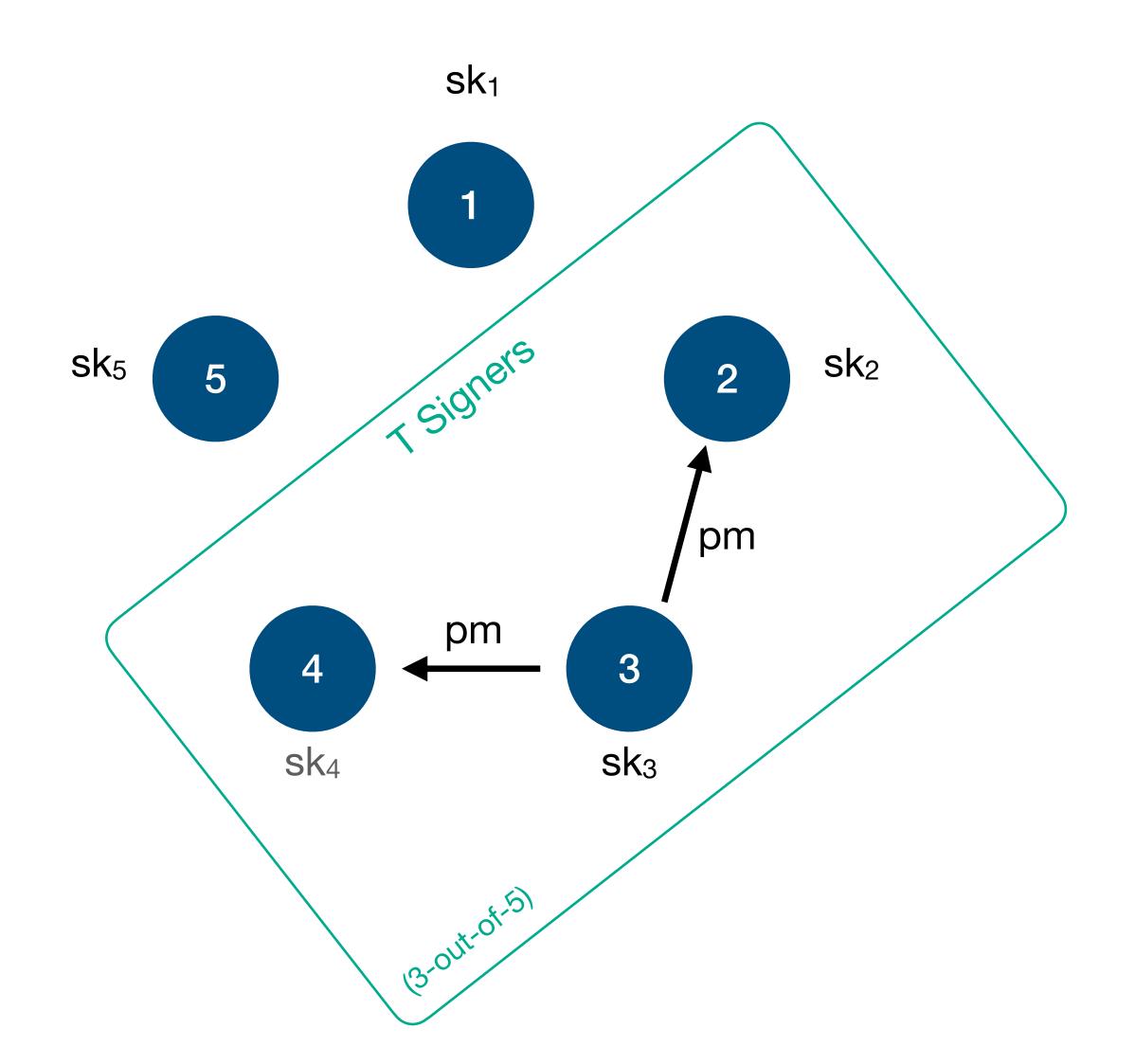
Adaptively Secure 5 Round Threshold Signatures from MLWE / MSIS and DL with Rewinding

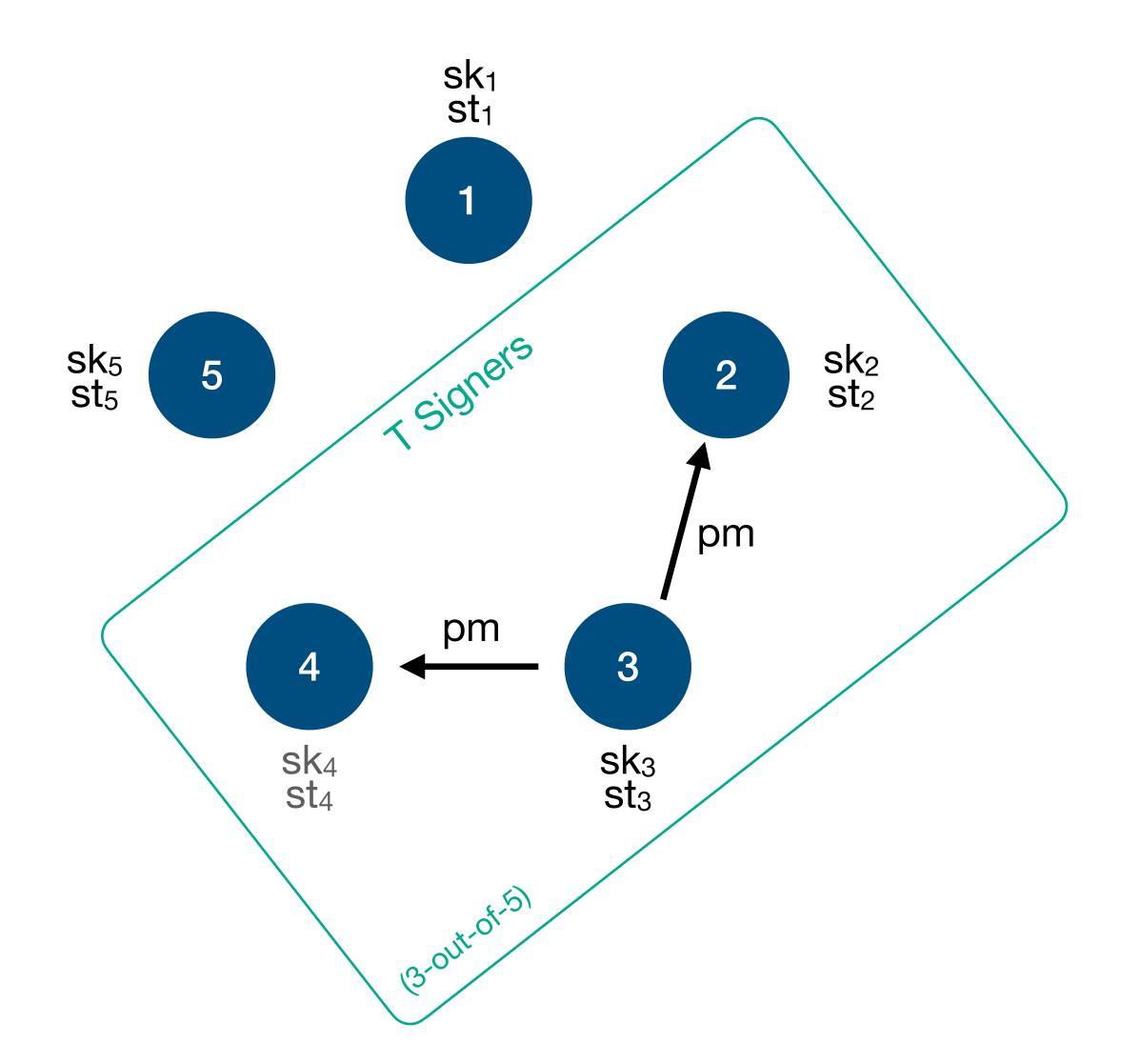
Shuichi Katsumata
PQShield — AIST

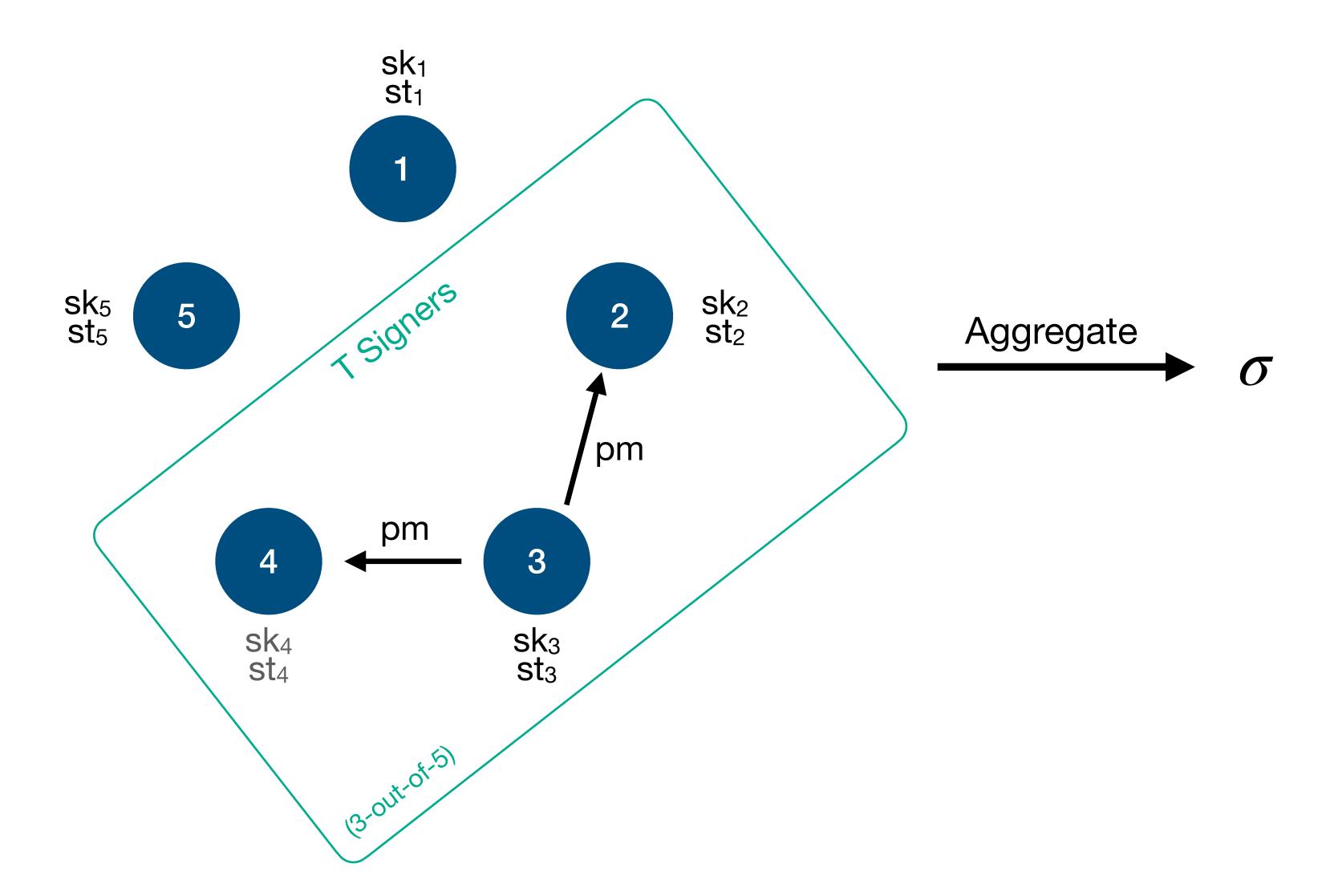
• Michael Reichle ETH Zurich

Kaoru Takemure
PQShield — AIST



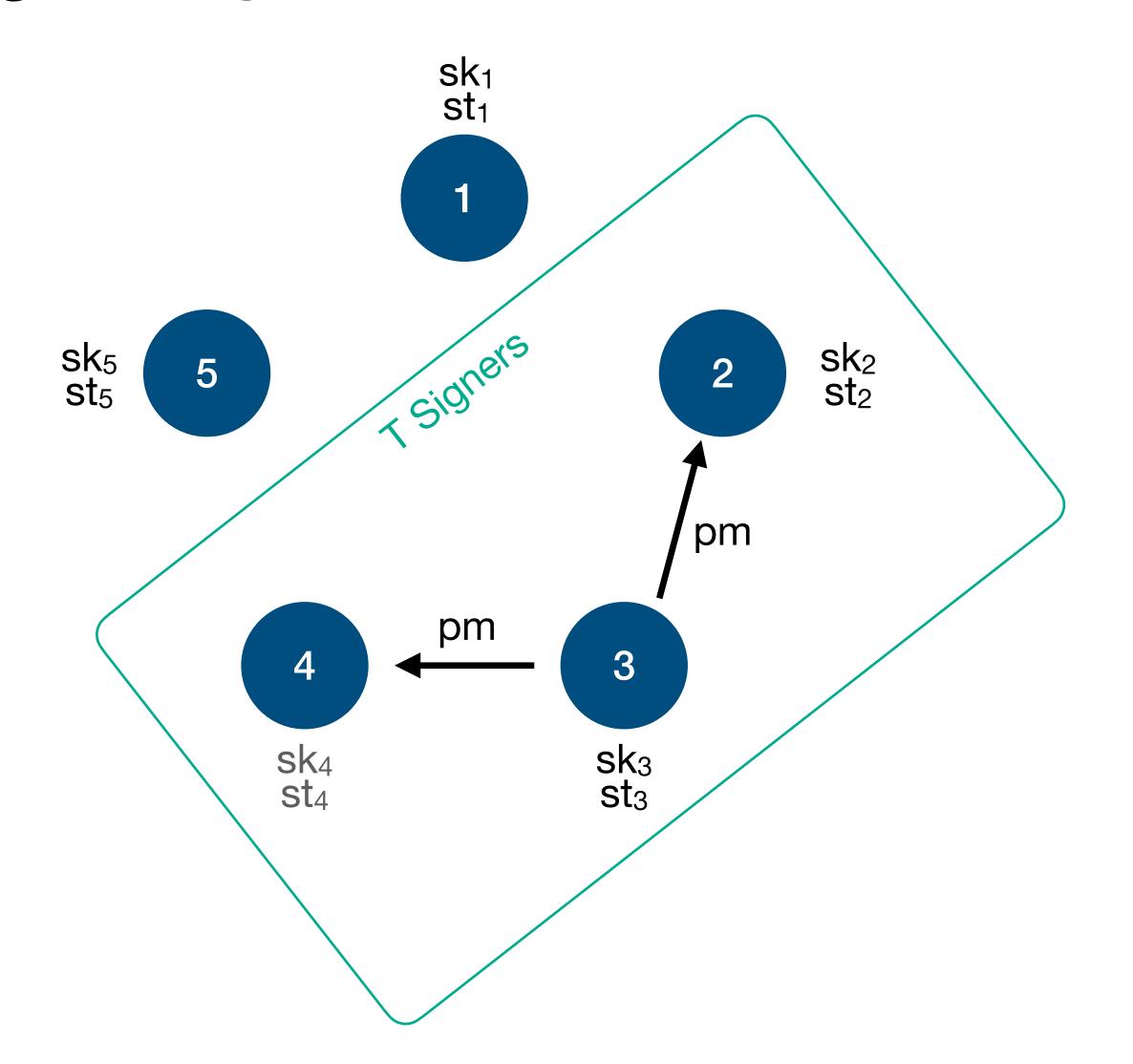


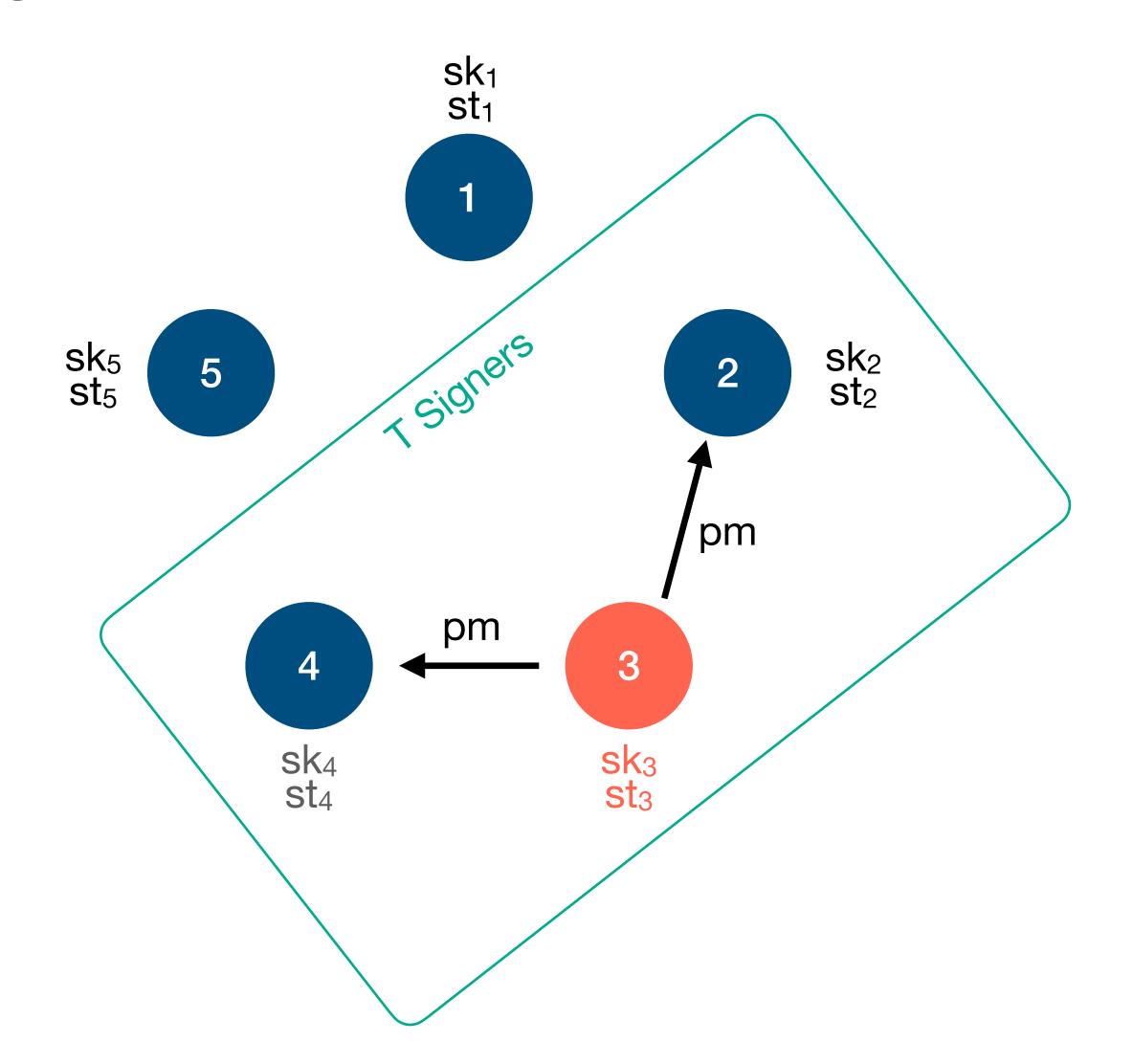


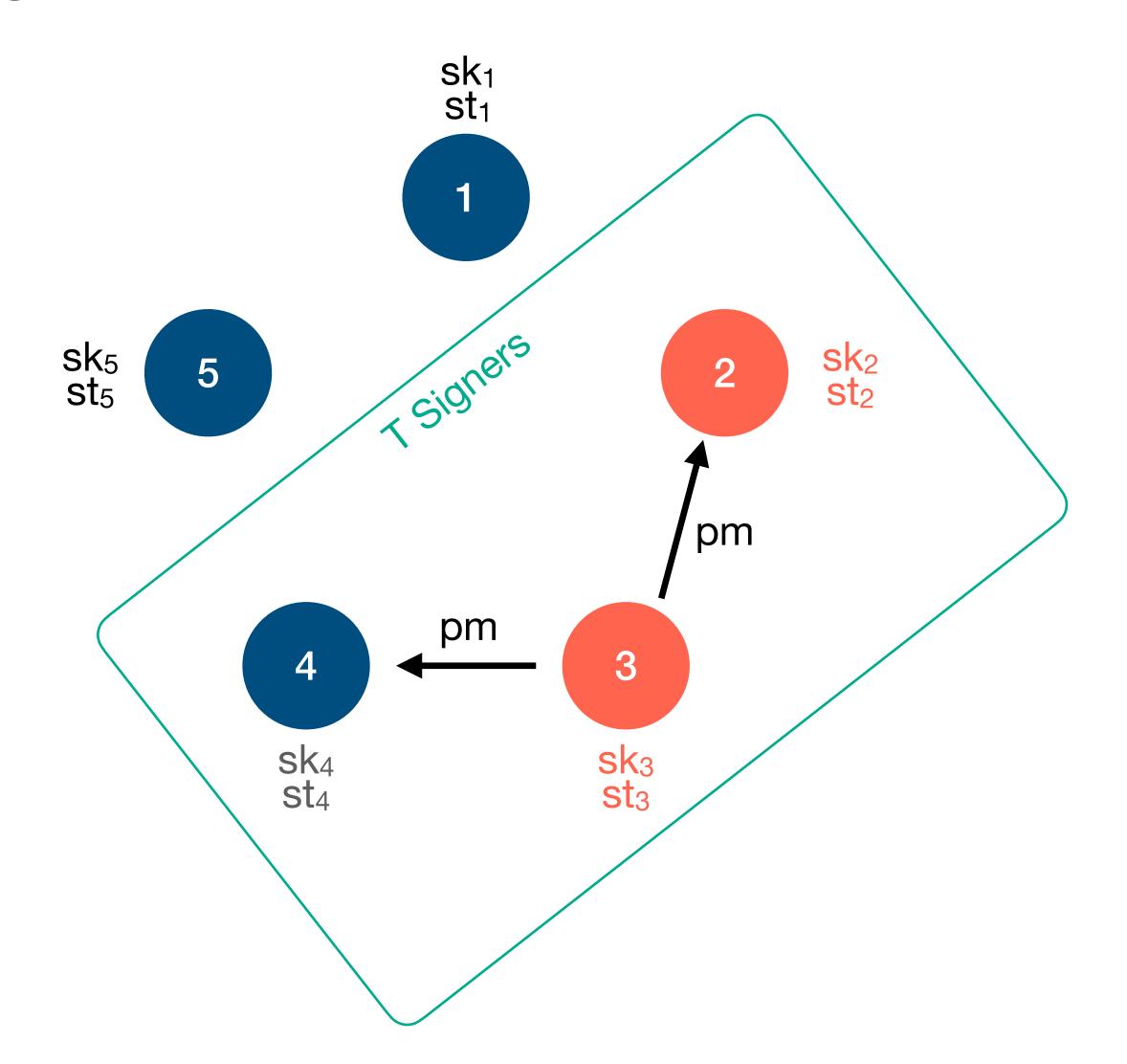


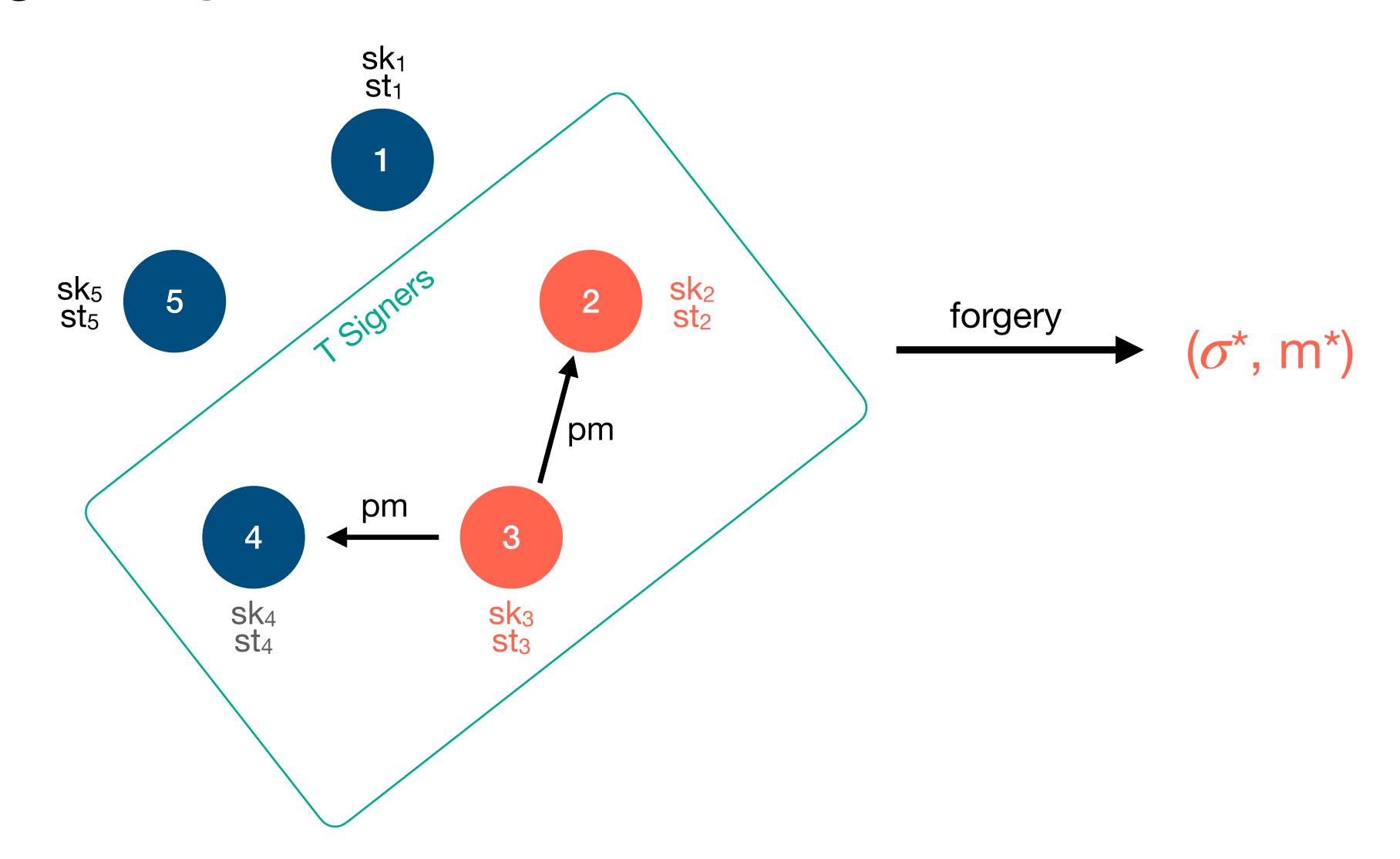
Security

- It is hard to find a non-trivial forgery, even in presence of at most T-1 corrupted signers
- Selective: corrupted signers are initially fixed
- Adaptive: signers are corrupted adaptively









State-of-the-Art

Fiat-Shamir based Threshold Signatures

- Many efficient protocols (Threshold Raccoon, Threshold Schnorr, ...)
- Often relies on ROM and standard assumptions (MLWE / MSIS, DLOG, ...)

State-of-the-Art

Fiat-Shamir based Threshold Signatures

Selective Security:

- Many efficient protocols (Threshold Raccoon, Threshold Schnorr, ...)
- Often relies on ROM and standard assumptions (MLWE / MSIS, DLOG, ...)

Adaptive Security:

- [CKM23]: Adaptive security under AGM, ROM and AOMDL for Schnorr
- [BLTWZ24]: Adaptive security under ROM and DDH for Schnorr-variant

Results:

 Main Result: Techniques for adaptive security under minimal assumptions in the ROM

- Main Result: Techniques for adaptive security under minimal assumptions in the ROM
 - Schnorr: 5 round protocol under DL

- Main Result: Techniques for adaptive security under minimal assumptions in the ROM
 - Schnorr: 5 round protocol under DL
 - Raccoon: 5 round protocol under MLWE / MSIS

- Main Result: Techniques for adaptive security under minimal assumptions in the ROM
 - Schnorr: 5 round protocol under DL
 - Raccoon: 5 round protocol under MLWE / MSIS
- Others:

- Main Result: Techniques for adaptive security under minimal assumptions in the ROM
 - Schnorr: 5 round protocol under DL
 - Raccoon: 5 round protocol under MLWE / MSIS
- Others:
 - State-free security proof for Threshold Raccoon

Results:

- Main Result: Techniques for adaptive security under minimal assumptions in the ROM
 - Schnorr: 5 round protocol under DL
 - Raccoon: 5 round protocol under MLWE / MSIS

Others:

- State-free security proof for Threshold Raccoon
- Techniques to proof stronger unforgeability notions for simulation-based signatures

Masking-based Threshold Signature

[dKMMPS24]

Key Material:

•
$$vk = As$$

with
$$A = [\bar{A} \mid I]$$

•
$$sk_i = s_i$$

such that
$$S = \sum_{i \in S} L_{S,i} \cdot S_i$$

Signature:

•
$$\sigma = (w, z)$$

such that (i)
$$Az = c \cdot vk + w$$
 (iii) z is short (ii) $c = H(vk, w, m)$

[dKMMPS24]

Key Material:

•
$$vk = As$$

•
$$sk_i = s_i$$

Signature:

•
$$\sigma = (w, z)$$

Security:

with
$$A = [\bar{A} \mid I]$$

such that
$$S = \sum_{j \in S} L_{S,i} \cdot s_i$$

such that (i)
$$Az = c \cdot vk + w$$
 (iii) z is short

(ii)
$$c = H(vk, w, m)$$

[dKMMPS24]

Key Material:

•
$$vk = As$$

with
$$A = [\bar{A} \mid I]$$

•
$$sk_i = s_i$$

such that
$$s = \sum_{j \in S} L_{S,i} \cdot s_i$$

Signature:

•
$$\sigma = (w, z)$$

such that (i)
$$Az = c \cdot vk + w$$
 (iii) z is short

(ii)
$$c = H(vk, w, m)$$

EUF-CMA under MLWE / MSIS in the ROM

[dKMMPS24]

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- $\operatorname{cmt}_i = G(w_i)$
- send cmt_i

[dKMMPS24]

Round 1:

Round 2:

• $r_i \leftarrow \chi$

send w_i

- $w_i \leftarrow A \cdot r_i$
- $\operatorname{cmt}_i = G(w_i)$
- send cmt_i

Round 2:

[dKMMPS24]

Round 1:

• $r_i \leftarrow \chi$ • send w_i

- $w_i \leftarrow A \cdot r_i$
- $\operatorname{cmt}_i = G(w_i)$
- send cmt_i

Round 3:

- $check\ cmt_i = G(w_i)$
- $w = \sum_{j \in S} w_i$
- c = H(vk, w, m)
- sample 0-share Δ_i
- send $z_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$

[dKMMPS24]

Round 1:

Round 2:

•
$$r_i \leftarrow \chi$$

• send w_i

•
$$w_i \leftarrow A \cdot r_i$$

•
$$\operatorname{cmt}_i = G(w_i)$$

• send cmt_i

$$\Delta_i = \sum_{j \in S} PRF(k_{i,j}, sid) - PRF(k_{j,i}, sid)$$

Round 3:

•
$$check\ cmt_i = G(w_i)$$

$$\bullet \ w = \sum_{j \in S} w_i$$

•
$$c = H(vk, w, m)$$

• sample 0-share Δ_i

• send
$$z_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$$

Selective Security:

• Simulation of signing oracles without shares s_i :

- Simulation of signing oracles without shares S_i :
 - Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

[dKMMPS24]

- Simulation of signing oracles without shares S_i :
 - Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - \rightarrow $Az = c \cdot vk + w_i$ but r_i is unknown

- Simulation of signing oracles without shares S_i :
 - Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - \rightarrow $Az = c \cdot vk + w_i$ but r_i is unknown
 - Use properties of zero-share Δ_i to embed z into the signing session

- Simulation of signing oracles without shares S_i :
 - Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - \rightarrow $Az = c \cdot vk + w_i$ but r_i is unknown
 - Use properties of zero-share Δ_i to embed z into the signing session
- Rewind to extract MSIS solution s

Adaptive Security

Adaptive Security:

Adaptive Security

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

Adaptive Security

Adaptive Security:

• Simulate a commitment-response pair (w_i, z) for challenge c via HVZK

$$\rightarrow Az = c \cdot vk + w_i$$
 but r_i is unknown

Adaptive Security

Adaptive Security:

- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - $\rightarrow Az = c \cdot vk + w_i$ but r_i is unknown
- Use properties of zero-share Δ_i to embed z into the signing session

Adaptive Security

Adaptive Security:

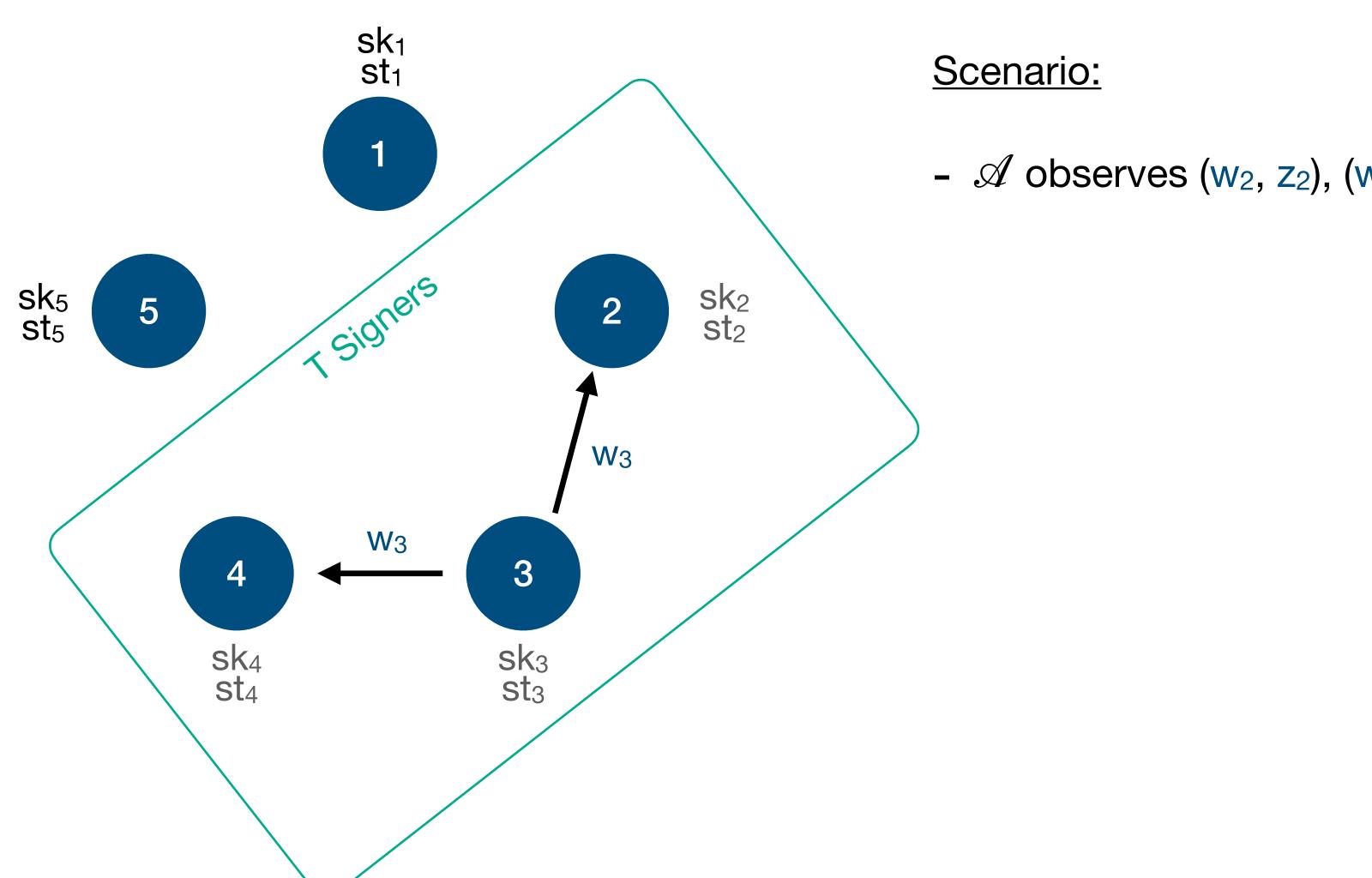
- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - $\rightarrow Az = c \cdot vk + w_i$ but r_i is unknown
- Use properties of zero-share Δ_i to embed z into the signing session
- If signer i is corrupted: PANIC

Adaptive Security

Adaptive Security:

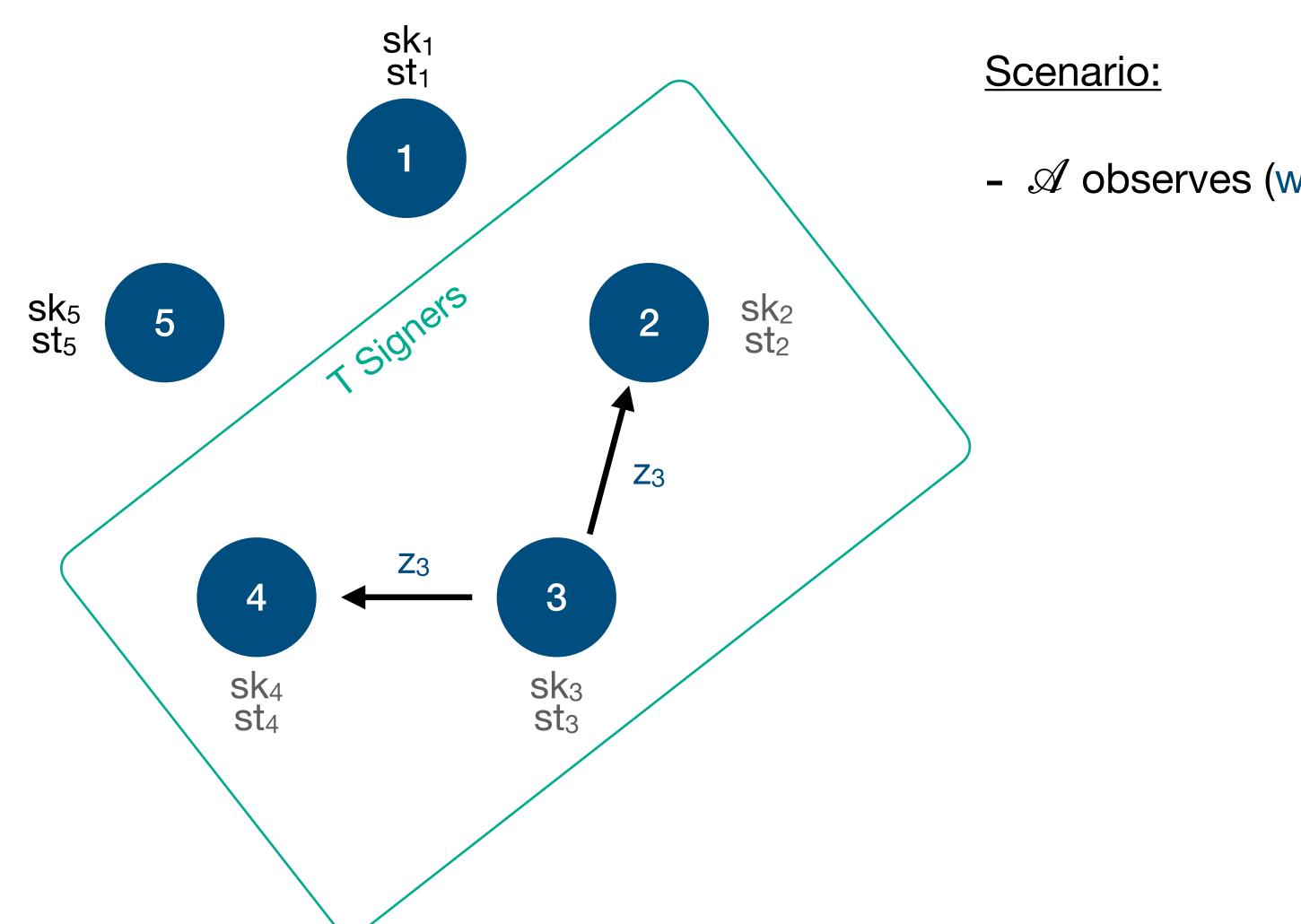
- Simulate a commitment-response pair (w_i, z) for challenge c via HVZK
 - $\rightarrow Az = c \cdot vk + w_i$ but r_i is unknown
- Use properties of zero-share Δ_i to embed z into the signing session
- If signer i is corrupted: PANIC

Adaptive Security



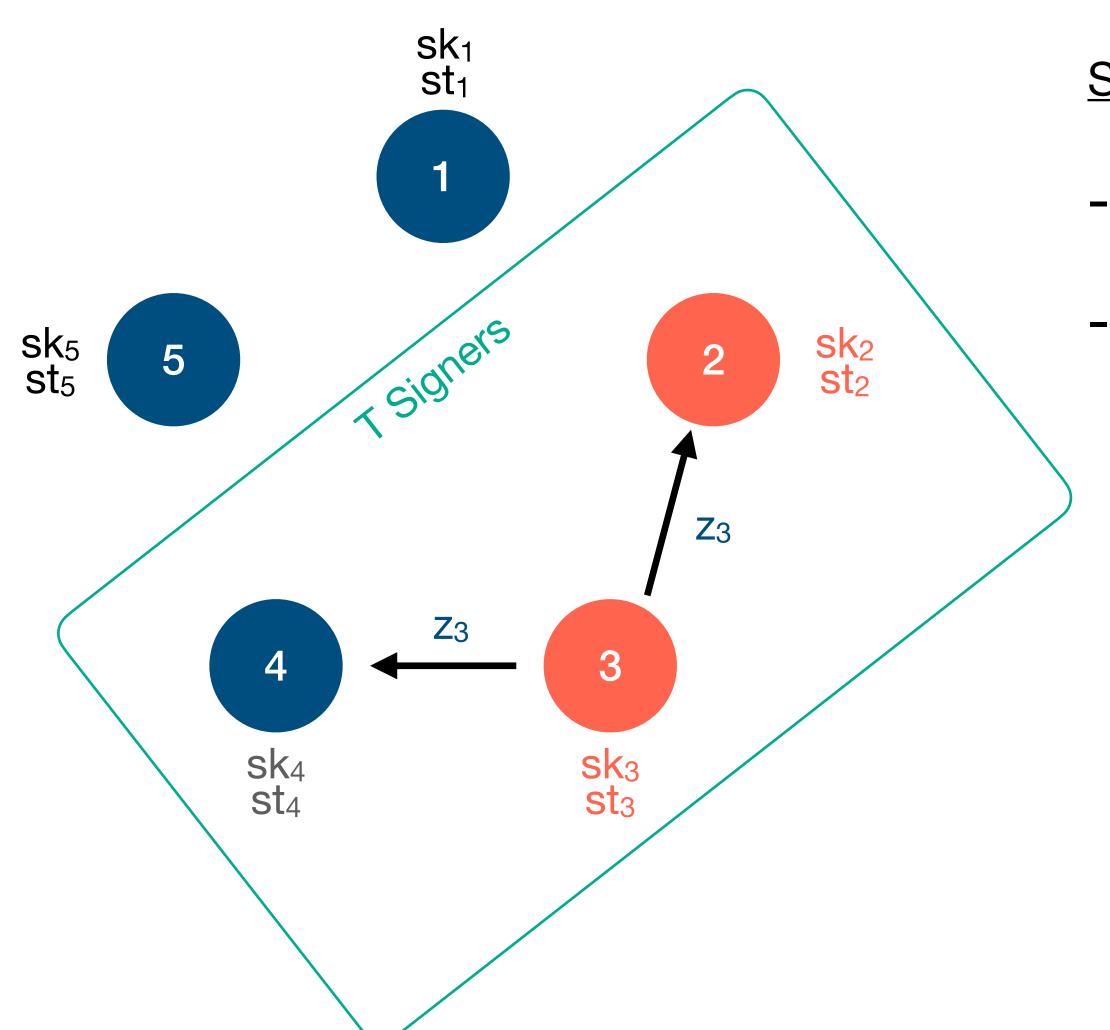
- \mathscr{A} observes (w₂, z₂), (w₃, z₃), (w₄, z₄)

Adaptive Security



- \mathscr{A} observes (w₂, z₂), (w₃, z₃), (w₄, z₄)

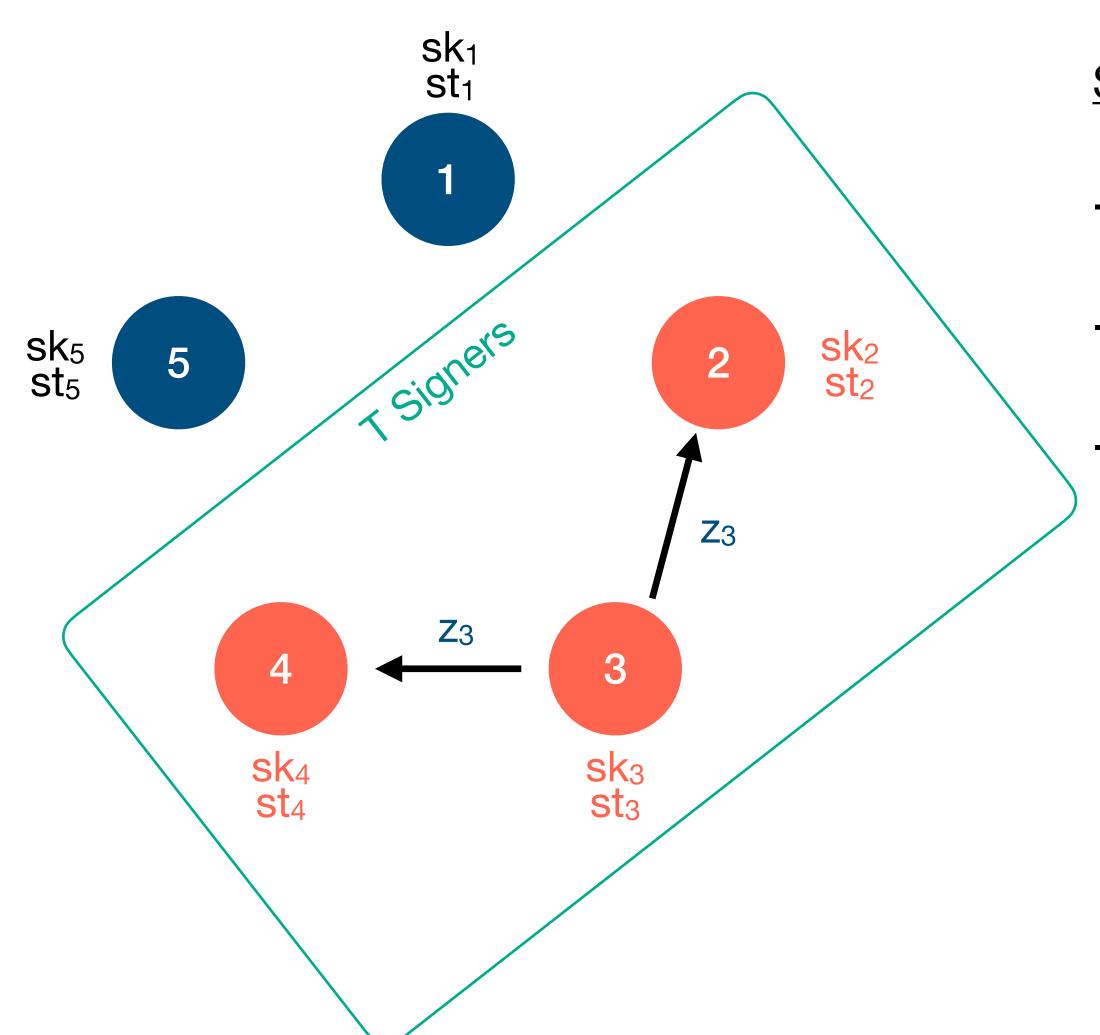
Adaptive Security



Scenario:

- A observes (w₂, z₂), (w₃, z₃), (w₄, z₄)
- A corrupts signer 2 and 3

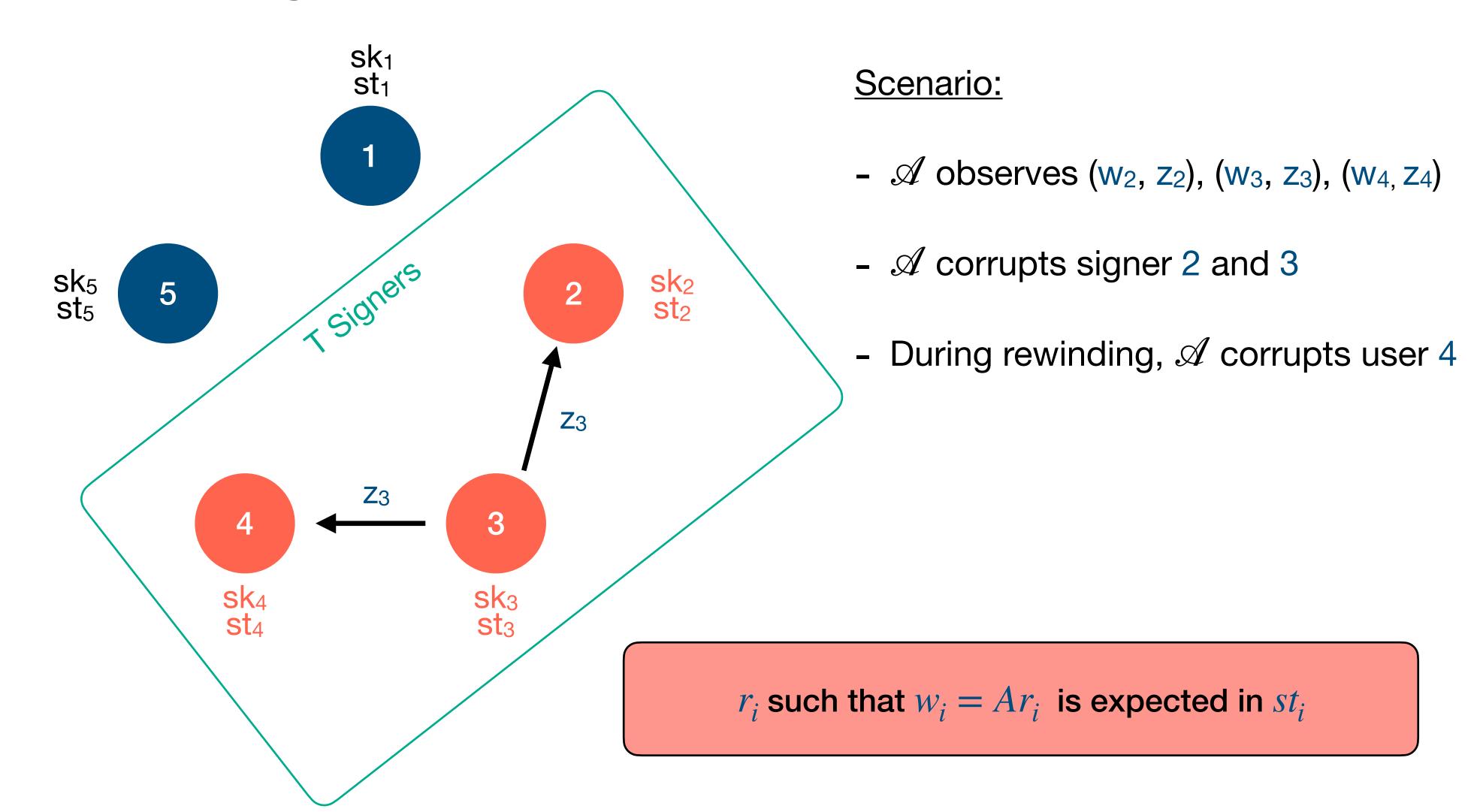
Adaptive Security



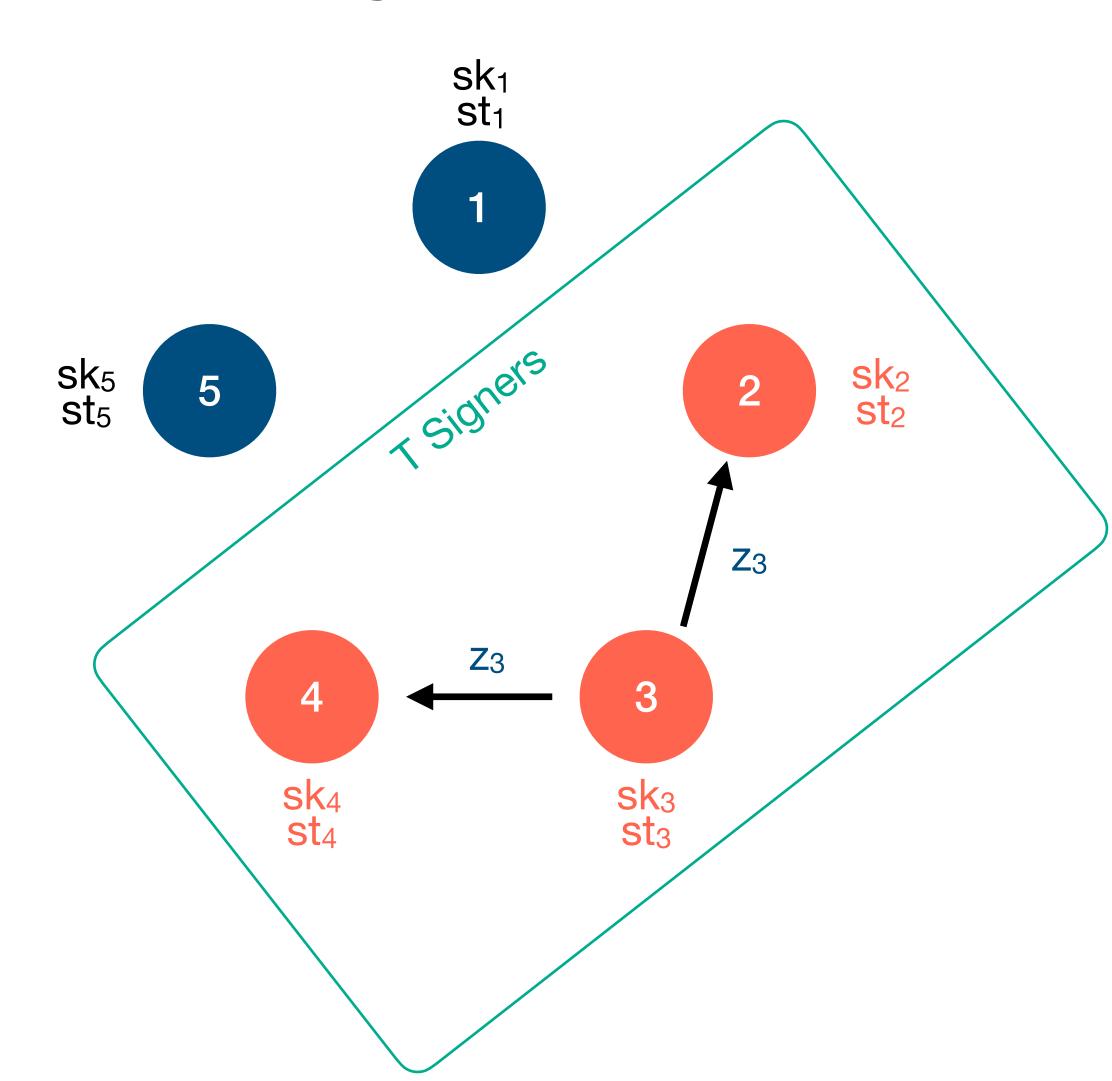
Scenario:

- A observes (w₂, z₂), (w₃, z₃), (w₄, z₄)
- A corrupts signer 2 and 3
- During rewinding, A corrupts user 4

Adaptive Security



Adaptive Security



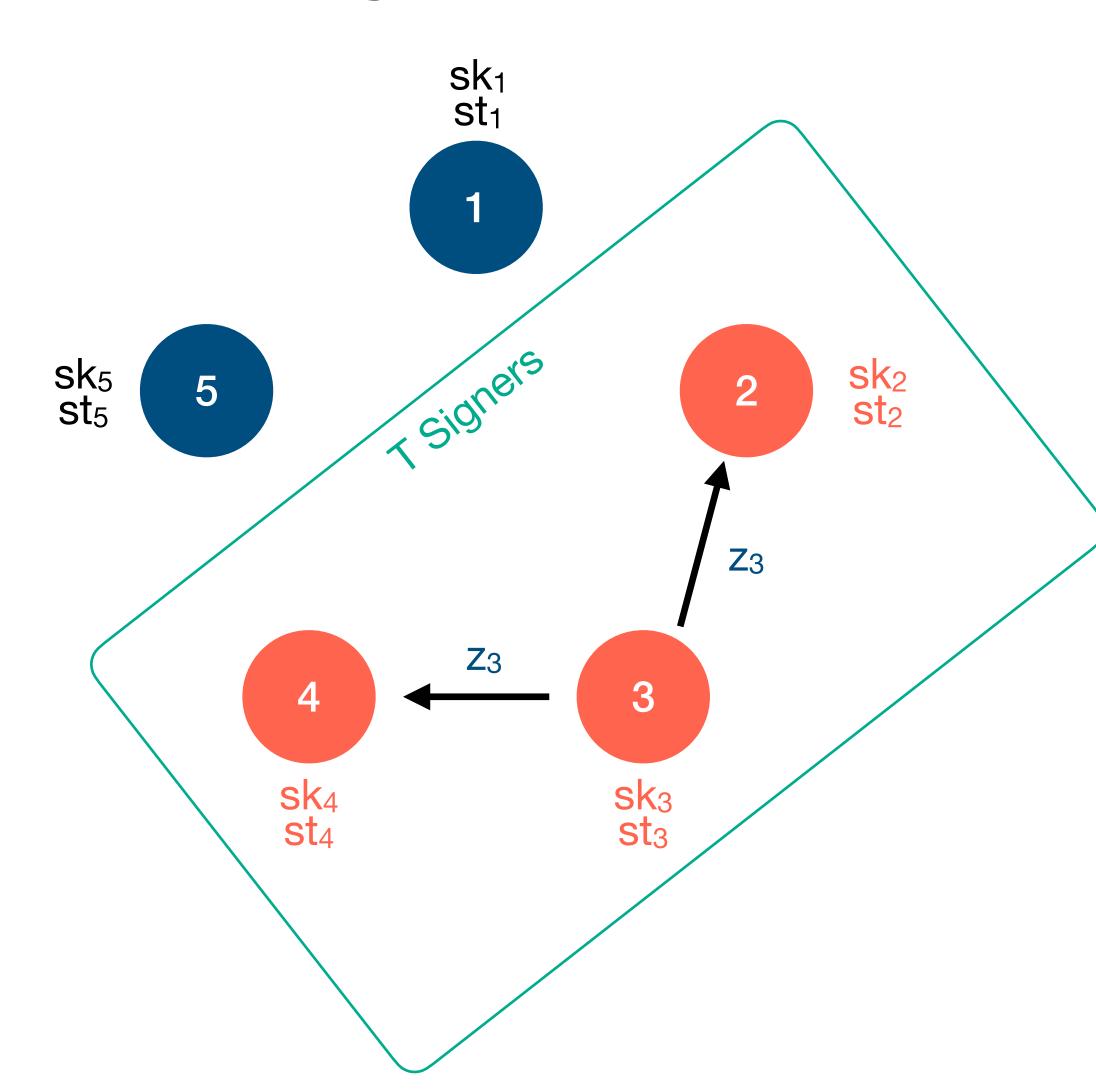
Scenario:

- \mathscr{A} observes (w₂, z₂), (w₃, z₃), (w₄, z₄)
- A corrupts signer 2 and 3
- During rewinding, A corrupts user 4

Conclusion:

- The reduction has no space to embed a simulated wi

Adaptive Security



Scenario:

- A observes (w₂, z₂), (w₃, z₃), (w₄, z₄)
- A corrupts signer 2 and 3
- During rewinding, A corrupts user 4

Conclusion:

- The reduction has no space to embed a simulated w_i
- The secret keys ski cannot be fixed in advance

Our Solution

More masking solves the problem

4-round Threshold Raccoon

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- sample 0-share $\tilde{\Delta}_i$
- $\tilde{w}_i \leftarrow w_i + \tilde{\Delta}_i$
- $\operatorname{cmt}_i = G(\tilde{w}_i)$
- send cmt_i

4-round Threshold Raccoon

Round 1:

- $r_i \leftarrow \chi$
- $w_i \leftarrow A \cdot r_i$
- sample 0-share $\tilde{\Delta}_i$
- $\tilde{w}_i \leftarrow w_i + \tilde{\Delta}_i$
- $\operatorname{cmt}_i = G(\tilde{w}_i)$

• send cmt_i

Note:

Requires non-repeating *sid* which requires state-keeping

This *sid* can be established in additional round

0-shares are sampled via RO

$$\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$$

4-round Threshold Raccoon

Round 1:

Round 2:

•
$$r_i \leftarrow \chi$$

sign view

•
$$w_i \leftarrow A \cdot r_i$$

• sample 0-share $\tilde{\Delta}_i$

•
$$\tilde{w}_i \leftarrow w_i + \tilde{\Delta}_i$$

•
$$\operatorname{cmt}_i = G(\tilde{w}_i)$$

• send cmt_i

0-shares are sampled via RO

$$\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$$

4-round Threshold Raccoon

Round 1:

•
$$r_i \leftarrow \chi$$

•
$$w_i \leftarrow A \cdot r_i$$

• sample 0-share $\tilde{\Delta}_i$

•
$$\tilde{w}_i \leftarrow w_i + \tilde{\Delta}_i$$

- $\operatorname{cmt}_i = G(\tilde{w}_i)$
- send cmt_i

Round 2: Round 3:

sign viewcheck

check signature

• send \tilde{w}_i

0-shares are sampled via RO

$$\Delta_i = \sum_{i \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$$

4-round Threshold Raccoon

Round 1:

•
$$r_i \leftarrow \chi$$

•
$$w_i \leftarrow A \cdot r_i$$

- sample 0-share $\tilde{\Delta}_i$
- $\tilde{w}_i \leftarrow w_i + \tilde{\Delta}_i$
- $\operatorname{cmt}_i = G(\tilde{w}_i)$

• send cmt_i

Round 2:

sign viewcheck

check signature

Round 3:

• send \tilde{w}_i

0-shares are sampled via RO

$$\Delta_i = \sum_{j \in S} F(k_{i,j}, \text{sid}) - F(k_{j,i}, \text{sid})$$

Round 4:

• check $\operatorname{cmt}_i = G(\tilde{w}_i)$

$$w = \sum_{j \in S} \tilde{w}_i$$

•
$$c = H(vk, w, m)$$

• sample 0-share Δ_i

•
$$z_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$$

• send z_i

Simplified

Intuition:

• The masking via 0-shares $\tilde{\Delta}_i$ and Δ_i minimize information learned from signing sessions:

$$S = \sum_{j \in S} L_{S,j} S_i$$

$$-\tilde{w}_i = w_i + \tilde{\Delta}_i$$

$$-\tilde{z}_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$$

$$- w_i = [A \mid I] r_i$$

$$-0 = \sum_{j \in S} \tilde{\Delta}_j = \sum_{j \in S} \Delta_j$$

statistically hidden determined

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

• The masking via 0-shares $\tilde{\Delta}_i$ and Δ_i minimize information learned from signing sessions:

$$S = \sum_{j \in S} L_{S,j} S_i$$

$$-\tilde{w}_i = w_i + \tilde{\Delta}_i$$

$$-\tilde{z}_i = c \cdot L_{S,i} \cdot s_i + r_i + \Delta_i$$

$$- w_i = [A \mid I] r_i$$

$$0 = \sum_{j \in S} \tilde{\Delta}_j = \sum_{j \in S} \Delta_j$$

statistically hidden determined

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

• Simulate one w_i via HVZK and the others honestly (allows to simulate signing)

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

- Simulate one w_i via HVZK and the others honestly (allows to simulate signing)
- On corruption, sample s_i at random and choose one honest w_i per session

Simplified

Intuition:

The protocol message are uniform conditioned on the final signature verifying

- Simulate one w_i via HVZK and the others honestly (allows to simulate signing)
- On corruption, sample s_i at random and choose one honest w_i per session
- Program RO for 0-shares for consistency

Summary

Results:

- Proof technique for adaptive security in the ROM
- State-free security proof for Threshold Raccoon
- Techniques to prove stronger unforgeability notions