Memory-Efficient

Searchable Symmetric Encryption

Angele Bossuat, Raphael Bost, Pierre-Alain Fouque,
Brice Minaud, Michael Reichle

la.cr/2021/716

http://ia.cr/2021/716

Roadmap

- Searchable Encryption: Introduction
- Problem statement: Page-efficient encryption.

- A solution: Tethys.

Outsourcing storage

Data upload W
—>
r

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
- Company/hospital outsourcing client/patient info.

- Private email service.

Outsourcing storage

Data upload

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
- Company/hospital outsourcing client/patient info.

- Private email service.

Sensitive data — encryption is needed.

Searchable Encryption

Data upload

Data access '
- 4

Client Server

Searchable Encryption (SE):
- Client stores encrypted database on server.
- Client can perform search queries.
> Privacy of data and queries is desired.

Searchable Encryption

Data upload

>

Data access

(&

Client Server

Searchable Encryption (SE):
- Client stores encrypted database on server.
- Client can perform search queries.
> Privacy of data and queries is desired.

Static SE: search queries.
Dynamic SE: search + update queries.

Searchable Encryption

Data upload

Data access

e

Client Server = adversary

Adversary: honest-but-curious server.

Security goal: privacy of data and queries.

Leakage
leakage

Data uploadé “
>
Data access g W ﬁ

Client Server = adversary

Generic solutions (FHE) are infeasible at scale
— for efficiency reasons, some leakage is allowed.

Example:
- Setup leaks: total number of elements in database.

- Search leaks: repetition of queries + IDs of documents matching
each query.

Leakage
leakage

Data uploadé “
>
Data access g ﬂ a

Client Server = adversary

Generic solutions (FHE) are infeasible at scale
— for efficiency reasons, some leakage is allowed.

Example:
- Setup leaks: total number of elements in database.

- Search leaks: repetition of queries + IDs of documents matching
each query.

Security model: Server learns nothing except leakage.

Leakage
leakage

Data uploadé “
>
Data access g ﬂ ﬁ

Client Server = adversary

Generic solutions (FHE) are infeasible at scale
— for efficiency reasons, some leakage is allowed.

Example:
- Setup leaks: total number of elements in database.

- Search leaks: repetition of queries + IDs of documents matching
each query.

Security model: Server learns nothing except leakage.

No leakage about unqueried keywords.

State of the Art

- No perfect solution.

Every solution is a trade-off between functionality and security.

- Large amount of literature.

[AKSX04], [BCLOO09], [PKV+14], [BLR+15], [NKW15], [KKNO16],
[LW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

- A few “complete” solutions:
Mylar (for web apps)
CryptDB (handles most of SQL)

-> Cipherbase (Microsoft), Encrypted BigQuery (Google), ...

State of the Art

- No perfect solution.

Every solution is a trade-off between functionality and security.

- Large amount of literature.

[AKSX04], [BCLOO09], [PKV+14], [BLR+15], [NKW15], [KKNO16],
[LW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

- A few “complete” solutions:
Mylar (for web apps)
CryptDB (handles most of SQL)

-> Cipherbase (Microsoft), Encryf)jced BigQuery (Google), ...

1. Very controversial security

State of the Art

- No perfect solution.

Every solution is a trade-off between functionality and security.

- Large amount of literature.

[AKSX04], [BCLOO09], [PKV+14], [BLR+15], [NKW15], [KKNO16],
[LW16], [FVY+17], [SDY+17], [DP17], [HLK18], [PVC18], [MPC+18]...

- A few “complete” solutions:
Mylar (for web apps)
CryptDB (handles most of SQL)

-> Cipherbase (Microsoft), Encryf)jced BigQuery (Google), ...

1. Very controversial security

Today: single-keyword SSE.

Single-keyword SSE
A A A
Reverse index:
“car” » 1d4, Ids

“duck” » 1do, 1d3, Ids, ...

Single-keyword SSE
b W N
Reverse index:
==
-

Single-keyword SSE: Setup

Reverse index:

~=>
-

Legend:
Enc(rsms)
Enc(

~
1

>

Encrypted reverse index:

10

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

L i

Single-keyword SSE: Search

Encrypted reverse index:

Id4, Ids, ...

L i

List storage

12

List storage

Naive solutions for list storage:

12

List storage

Naive solutions for list storage:

A a = a -

Leaks lengths of all keywords.

12

List storage

Naive solutions for list storage:

A a = a -

Leaks lengths of all keywords.

12

List storage

B a
L a
R

Naive solutions for list storage:

A a = a -

Leaks lengths of all keywords.

Position of one list depends on lengths of other lists.

12

Database 1

Naive storage

Database 2
I

|3

Database 1

Naive storage

Client queries:]

Database 2
I

|3

Database 1

Naive storage

D
L

Client queries:]

Server view:

Database 1

[T T 1]

D

atabase 2

atabase 2

[1]

|3

Naive storage

Database 1 Database 2

Client queries:]

Server view:

Database 1 Database 2

I [T []

A

gap of size IEE—_—

|3

Server
memory

Secure list storage

|4

Server
memory

Secure list storage

[

|4

Secure list storage

N ——

Server
memory

RN
[] [] [] []

|4

Secure list storage

O O 1 [[]
Server \
memory = - / 7 [
[] L] []

[

Security: OK,

List of length Z = #Z unif. random memory accesses

|5

Secure list storage

O O 1 [[]
Server \
memory = - / 7 [
[] L] [] L]

Security: OK,

List of length Z = #Z unif. random memory accesses

Efficiency: Terrible.

Secure list storage

O O 1 [[]
Server \
memory = - / 7 [
[] L] [] L]

Security: OK,

List of length Z = #Z unif. random memory accesses

Efficiency: Terrible.

Worst-case cost for Hard Disk Drives: reading contiguous memory
much cheaper than random locations.

|5

Formalizing the problem

Cash & Tessaro EC 14

|6

Formalizing the problem

Cash & Tessaro EC 14

Locality: #discontinuous memory accesses to answer a query.

|6

Formalizing the problem

Cash & Tessaro EC 14

Locality: #discontinuous memory accesses to answer a query.

Read efficiency: #memory words accessed to answer a query /
#memory words of plaintext answer.

|6

Formalizing the problem

Cash & Tessaro EC 14

Locality: #discontinuous memory accesses to answer a query.

Read efficiency: #memory words accessed to answer a query /
#memory words of plaintext answetr.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

16

Formalizing the problem

Cash & Tessaro EC 14

Locality: #discontinuous memory accesses to answer a query.

Read efficiency: #memory words accessed to answer a query /
#memory words of plaintext answer.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

Theorem (Cash & Tessaro EC’14):

Secure SSE cannot have O(1) in all 3 measures.

|6

Building local SSE

Asharov et al. STOC ’16 N = size of DB
Scheme Locality Storage eff. Read eff.
“One-choice” O(1) O(1) O(log N)
“Two-choice” O(1) O(1) O(log log N)*
“‘Pad-and-split” O(1) O(log N) O(1)

*under condition: longest list size < N1-1/loglog N

Demertzis et al. Crypto ’18

Scheme Locality Storage eff. Read eff.
Untitled O(1) O(1) O(log2/3+¢ N)

|7

Page efficiency

HDD vs SSD

Two most prevalent media for storage:

Hard Disk Drive
HDD

Solid State Drive
SSD, “Flash”

19

HDD vs SSD

600

200 470

425

395

400

300

Shipments in millions

200

100

2015 2016 2017% 2018~ 2019~ 2020* 2021%

® HDD @ SSD

SSDs Outsell HDDs in Unit Sales 3:2: 99
Million Vs. 64 Million in Q1

By Anton Shilov May 21, 2021

But HDDs maintain exabytes lead: 288.3EB vs 61.5EB.

https://www.statista.com/statistics/285474/hdds-and-ssds-in-pcs-global-shipments-2012-2017/
https://www.tomshardware.com/news/ssd-market-shares-q1-2021-trendfocus

20

https://www.statista.com/statistics/285474/hdds-and-ssds-in-pcs-global-shipments-2012-2017/
https://www.tomshardware.com/news/ssd-market-shares-q1-2021-trendfocus

Performance criterions

21

Performance criterions

HDD: |ocality (+ read efficiency).

21

Performance criterions

HDD: locality (+ read efficiency).

SSD: locality does not matter...

21

Performance criterions

HDD: locality (+ read efficiency).

SSD: locality does not matter...
What matters: number of memory pages read.

21

Performance criterions

HDD: locality (+ read efficiency).

SSD: locality does not matter...

What matters: number of memory pages read.

Server
memory

21

Performance criterions

HDD: locality (+ read efficiency).

SSD: locality does not matter...
What matters: number of memory pages read.

Server
memory

21

Performance criterions

HDD: locality (+ read efficiency).

SSD: locality does not matter...
What matters: number of memory pages read.

Server
memory

One page

Page efficiency

HDD: Locality + Read efficiency + Storage efficiency.

SSD:
Page efficiency: #memory pages accessed to answer a query /
#memory pages of plaintext answer.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

22

Page efficiency

HDD: Locality + Read efficiency + Storage efficiency.

SSD:

Page efficiency: #memory pages accessed to answer a query /
#memory pages of plaintext answer.

Storage efficiency: #memory words to store encrypted DB /
#memory words of plaintext DB.

1024 | | | | |

256

64 -

Throughput of
asynchronous reads,
function of the block size

—
op

Throughput (MiB/s)

0.25 S Dlasync] readsl —|—| HPD asYnc. rﬁads IH(_—

1 4 16 64 256 1024 409616 38465 536
Block size (KiB)

22

Page efficiency

HDD: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC ’14):

Secure SSE cannot have O(1) in all 3 measures.

23

Page efficiency

HDD: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC ’14):

Secure SSE cannot have O(1) in all 3 measures.

SSD: Page efficiency + Storage efficiency.

Can we get O(1) in both measures?

23

Page efficiency

HDD: Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC ’14):

Secure SSE cannot have O(1) in all 3 measures.

SSD: Page efficiency + Storage efficiency.

Can we get O(1) in both measures?

(Yes.)

23

Page-efficient allocation

Problem recap

Lists [I I l I >

store

Server
memory »n
-
(+ Stash) | One page

25

Problem recap

Lists B I I l I >

store

Server
memory B
3
(+ Stash) | | One page

WLOG all lists are of size at most one page:

e |
———-‘> Split
1 page 1 page 1 page <1 page

25

Problem recap

 One page

List I I l I e
S . > store
Server |
memory B
3
(+ Stash) | | One page

WLOG all lists are of size at most one page:

e |
———-‘> Split
1 page 1 page 1 page <1 page

25

Problem recap

Lists o I l I

-~ One page

Server
+ Stash | | One page
Goal:

Page efficiency: #pages accessed to get one list = O(1).

Storage efficiency: #pages to store encrypted DB = O(n).
v

n=2listsizes/p
26

Data-Independent Packing

Lists o I l I

-~ One page

Server
+ Stash | | One page
Goal:

Page efficiency: #pages accessed to get one list = O(1).
Storage efficiency: #pages to store encrypted DB = O(n).

Security: pages accessed to get list ID = f4(ID).
Does not depend on rest of DB.

27

Tethys allocation

Lists o I I l I

Server
memory

+ Stash |

28

Lists

Server
memory

+ Stash

Tethys allocation

28

Lists

Server
memory

+ Stash

Tethys allocation

m‘) sampled I.u.r.

28

Tethys allocation

Lists BB I l I
lm‘) sampled i.u.r.

Server
memory

|Invariant:
Every list C its two associated buckets + the stash.

+ Stash |

28

Lists

Server
memory

+ Stash

Tethys allocation

»0\

29

Tethys allocation

Lists I I l I

\0\

Server
memory

overflow (

+ Stash |

29

Tethys allocation

Lists I I l I

Server
memory

overflow (

29

Server
memory

overflow (
1 item

30

Server
memory

overflow (
1 item

30

Server
memory

overflow (

31

Tethys

Lists o I I l I

Server
memory

overflow (

32

Server
memory

overflow (

32

Server
memory

33

Tethys

Lists o I I l I

Server
memory

overflow (

34

Tethys

Lists o I I l I

Server
memory

overflow (

34

Server
memory

34

Server
memory

35

Server
memory

overflow

+ Stash |

36

Server
memory §
overflow (

+ Stash |

36

Server
memory §
" " ? "
overflow each page
= 1 vertex
+ Stash |

37

Lists X1 x5 x3 x2 x4

Server
memory A
" | "
overflow each page
= 1 vertex
+ Stash |

37

Lists X1 x5 x3 x2 x4

each item
=1 edge

Server .
memory A
i | i
overflow each page
= 1 vertex
+ Stash |

37

Lists X1 x5 x3 x2 x4

each item
=1 edge
Server
memory T
" " | "
overflow each page
= 1 vertex

Goal of algorithm: find maximal set of disjoint paths from
overfull pages to underfull pages.

+ Stash | |

37

Lists X1 x5 x3 x2 x4

each item
=1 edge
Server
memory T
" " | "
overflow each page
= 1 vertex

Goal of algorithm: find maximal set of disjoint paths from
overfull pages to underfull pages.

This is exactly a maximum flow algorithm.

+ Stash | |

37

Tethys summary

Lists x1 x5

Server
memory

Tethys allocation

1. Assign 2 unif. random pages to each list.
2. Put each list in one of the two pages (arbitrarily).

3. Compute max flow over graph to find set of paths.

4. Move items along paths.
5. Items that still overflow, if any, go to the stash.

38

Optimization problem

Lists o I I l I

Objective: minimize stash size
under constraint: all items are assighed somewhere, no
page overflows.

Server
memory

39

Optimization problem

Lists o I l I

Server
memory

Objective: minimize stash size
under constraint: all items are assighed somewhere, no
page overflows.

Tethys is optimal wrt this optimization problem.

I.e. outputs minimal stash size regardless of starting graph.

39

What size is the stash?

Parameter choice

Let n = X list sizes/p = #pages in DB.
Let s = #pages In stash.
Pick m = (2 + €)n pages for server memory, for any cst €>0.

Theorem
For any set of lists (s.t. n = X list sizes/p):

Prob[min stash size > s] = O(n-s/2)

40

What size is the stash?

Parameter choice

_et n = X list sizes/p = #pages in DB.
_et s = #pages In stash.

Pick m = (2 + g)n pages for server memory, for any cst €>0.

Theorem
For any set of lists (s.t. n = X list sizes/p):

Prob[min stash size > s] = O(n-s/2)

— stash size w(log 4)/log n = prob of failure is negligible.

Stash is stored on the client side.
Does not grow with the size of the database.

Experiments: a few pages suffice.

40

Remarks about the proof

Let L be a multiset of list sizes s.t. X L = np.
Let M be the multiset {p,p,p,...} s.t. Z M = np.

Central statement (simplified):
Prob[minStash(L) > s] < Prob[minStash(M) > s]

4]

Remarks about the proof

Let L be a multiset of list sizes s.t. X L = np.
Let M be the multiset {p,p,p,...} s.t. Z M = np.

Central statement (simplified):
Prob[minStash(L) > s] < Prob[minStash(M) > s]

4]

Remarks about the proof

Let L be a multiset of list sizes s.t. X L = np.
Let M be the multiset {p,p,p,...} s.t. Z M = np.

Central statement (simplified):
Prob[minStash(L) > s] < Prob[minStash(M) > s]

42

Remarks about the proof

Let L be a multiset of list sizes s.t. X L = np.
Let M be the multiset {p,p,p,...} s.t. Z M = np.

Central statement (simplified):
Prob[minStash(L) > s] < Prob[minStash(M) > s]

This is cuckoo hashing!

42

Tethys SSE

43

Tethys SSE

43

Tethys SSE

43

Tethys SSE

43

Tethys SSE

43

Tethys SSE

server memory
m = (2 + €)n pages

43

Tethys SSE

server memory
m = (2 + €)n pages

43

Tethys SSE

server memory
m = (2 + €)n pages

44

e ?

Enc(&as

l! Dec

Tethys SSE

server memory
= (2 + €)n pages

44

Tethys SSE

O
>
o o I
————————————————————
Enc(ses) = ©
l! Dec
server memory
= (2 + €)n pages
Performance:

Page efficiency: #pages accessed to get one list
Storage efficiency: #pages to store encrypted DB / n

Client storage: w(log A)/log n pages.

44

Tethys SSE

O
>
o o I
————————————————————
Enc(ses) = ©
l! Dec
server memory
= (2 + €)n pages
Performance:

Page efficiency: #pages accessed to get one list = 2 (+1)
Storage efficiency: #pages to store encrypted DB / n

Client storage: w(log A)/log n pages.

44

Tethys SSE

O
>
o o I
————————————————————
Enc(ses) = ©
l! Dec
server memory
= (2 + €)n pages
Performance:

Page efficiency: #pages accessed to get one list = 2 (+1)
Storage efficiency: #pages to store encrypted DB/ n = 2+¢

Client storage: w(log A)/log n pages.
44

Theory

Performance evaluation

Schemes Client st. Page eff. | Storage eff.
1_Ibas 0(1) O(p) O(l)
pack, Malev O(1) o) O(p)
1-Choice O(1) O(log N) O(1)
2-Choice O(1) | O(loglog N) O(1)
Tethys O(plog \) 3 3+e¢
Pluto O(plog A) 3 3+e¢
Nilus; O(plog \) 2t +1 | 1+ (2/e)t1

45

Performance evaluation

Schemes Client st. Page eff. | Storage eff.
1_Ibas (1) 0(]?) O(l)
1_IpaJcka 1_121ev (1) _ 0(1) O(p)
1-Choice O(1) O(log N) O(1)
Theory 2-Choice O1) | O(loglog N) O(1)
Tethys O(plog \) 3 3+e¢
Pluto O(plog A) 3 3+e¢
Nilus; O(plog) 2t +1 | 1+ (2/e)t1
Throughput I read eff. !

) N)
N [\ N
N N >
| | !

N
N
o
|

Implementation

Throughput (entries/s)
)
®
!

\V)
iy
o]
|

(\V]
—
S

Open-source optimized implementation: https://github.com/OpenSSE/

page

Ve

/‘}?g(Q‘r’-

Q ‘{?(

eff.”

9
AN AN N

&
%

S 7 C:
QCP 4

A
% % %

S

storage eff. ”!

— 1

Inverse efficiency

45

https://github.com/OpenSSE/

THANKS

Questions?

46

