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» Range Proofs

Range Proof

Show that some hidden, but fixed integer x lies in range [a,b]

Applications

∗ Anonymous Credentials
∗ Anonymous Transactions

[1/26]



Introduction Construction DLOG Lattices Class Groups References

» Range Proofs

Range Proof

Show that some hidden, but fixed integer x lies in range [a,b]

Applications

∗ Anonymous Credentials
∗ Anonymous Transactions

[1/26]



Introduction Construction DLOG Lattices Class Groups References

» Commitments

c = x ; r x,r−−−→
open

Verify(c, x, r) = 1

Properties

∗ Hiding: The commitment does not reveal x.
∗ Binding: The commitment can not be opened to something else than x.
∗ Msg Space: x ∈ Zq
∗ Homomorphy:

∗ Additive: x0 ; r0 + x1 ; r1 = x0 + x1 ; r0 + r1
∗ Scalar: n · x ; r = n · x ;n · r
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» Σ-Protocols

Prover(w,x)

Commit to a mask
of the witness

Mask the witness

Verifier(x)

Draw random
challenge γ

Output 1 if transcript
(α, γ,ω) convincing

α

γ

ω

Properties

∗ Zero-Knowledge: Transcripts can be simulated without w.
∗ Soundness: A witness w can be extracted from accepted transcripts.
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» Proof of Opening

Prover(c,x,r)

c = x ; r ,d = m ; s

z = m+ γx,
t = s+ γr

Verifier(c)

Draw random
challenge γ

m ; s +γ x ; r = z ; t ?

d

γ

z, t

Extraction

Set x = (z0 − z1)/(γ0 − γ1) in Zq
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» Range Proofs

Zero-knowledge proof for R = {((x, r), ( x ; r , a,b)) | x ∈ [a,b]}

x ∈ [a,b] ⇐⇒ x− a,b− x ≥ 0

Approaches

∗ Binary Decomposition:
∗ x =

∑
i=0..l xi2i

∗ prove that xi ∈ {0, 1}
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» Range Proofs

Zero-knowledge proof for R = {((x, r), ( x ; r , a,b)) | x ∈ [a,b]}

x ∈ [0, 2!) ⇐⇒ x =
∑

i=0..!−1

xi2i and xi ∈ {0, 1}

Approaches

∗ Binary Decomposition:
∗ commit to the decomposition
∗ prove that xi ∈ {0, 1}
∗ most common approach (Lattice, DLOG, ..)
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» Range Proofs

Zero-knowledge proof for R = {((x, r), ( x ; r , a,b)) | x ∈ [a,b]}

x ∈ [a,b] ⇐⇒ x− a,b− x ≥ 0

Approaches

∗ Integer Commitments:
∗ prove that (b− x)(x− a) =

∑
i=1..4 x2i

∗ x ∈ Z
∗ require trusted setup, large parameters
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» Range Proofs

Simplification forB = b− a

x ∈ [a,b] ⇐⇒ x− a ∈ [0,b− a] ⇐⇒ x(B− x) =
∑

i=1..4

x2i

Optimization [Gro05]

x ∈ [0,B] ⇐⇒ 1 + 4x(B−x) =
∑

i=1..3

x2i
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» Setting

Range Proof
∗ (generic) commitment: c0 = x0 mod q ; r0
∗ avoid trusted setup
∗ optimize efficiency
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» Approach I

Idea

Use 3 square decomposition in Zq:
1 + 4x0(B−x0) =

∑
i=1..3 x2i

Prover

{ci,di}i=0..3

zi = mi + γxi,
ti = si + γri

Verifier

γ ← [0, 2λ]

di + γci = zi ; ti ?
check 3 square relation

d0, {ci,di}i=1..3

γ

{zi, ti}i=0..3
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» Approach I

Problem

3 square decomposition in Zq does not imply positivity

Prover

{ci,di}i=0..3

zi = mi + γxi,
ti = si + γri

Verifier

γ ← [0, 2λ]

di + γci = zi ; ti ?
check 3 square relation

d0, {ci,di}i=1..3

γ

{zi, ti}i=0..3
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» Approach II

Idea

Avoid overflows by ensuring short witnesses

Prover

{ci,di}i=0..3

zi = mi + γxi,
ti = si + γri

Verifier

γ ← [0, 2λ]

di + γci = zi ; ti ?
check 3 square relation
check zi short

d0, {ci,di}i=1..3

γ

{zi, ti}i=0..3
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» Approach II

Problem

Extracted x0 = z0−z′0
γ−γ′ mod q not short

Prover

{ci,di}i=0..3

zi = mi + γxi,
ti = si + γri

Verifier

γ ← [0, 2λ]

di + γci = zi ; ti ?
check 3 square relation
check zi short

d0, {ci,di}i=1..3

γ

{zi, ti}i=0..3
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» Approach II

Problem

1

2
= 3057 mod 6113 is large

Idea

Map fractions in Zq to integers via division in Q

Encoding

⌊
1

2

⌉
= 1 is small
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» Approach III

Relax commitment scheme:

z · γ−1 mod q commits to x =

⌊
z
γ

⌉
∈ Z

Properties

∗ binding if z, γ short
∗ retains (restricted) homomorphic properties
∗ retains shortness
∗ honest commitment unchanged

→ Bounded integer commitment scheme
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» Approach III
Obtain range proof for relaxed committed value

Prover

{ci,di}i=0..3

zi = mi + γxi,
ti = si + γri

Verifier

γ ← [0, 2λ]

di + γci = zi ; ti ?
check 3 square relation
check zi short

d0, {ci,di}i=1..3

γ

{zi, ti}i=0..3

Extraction

z− z′
γ − γ′

∈ Zq )→
⌊
z− z′
γ − γ′

⌉
∈ Z short

[16/26]
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» Limitations - Homomorphism

z · γ−1 ; r commits to x =
⌊
z/γ

⌉
∈ Z

∗ Honest: x0 ; r + x1 ; s = x0 + x1 ; r+ s

∗ Small Constants:
∗ z · γ−1 ; r + a ; 0 = (z+ γa) · γ−1 ; r
∗ commits to x+ a =

⌊
z/γ

⌉
+ a

∗ Dishonest:
∗ z0 · γ−1 ; r + z1 · γ−1 ; s = (z0 + z1) · γ−1 ; r+ s
∗ commits to

⌊
z0/γ

⌉
+
⌊
z1/γ

⌉
+ {0, 1}

∗ worse for non-equal denominator
→ ensure that committed integers are small enough
→ be careful about guarantees
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» Limitations - Group Size

Need to ensure no overflow in square decomposition:

1 + 4x0(B−x0) =
∑

i=1..3

x2i

Can only check size of zi:
1 + 4z0(B−z0) =

∑

i=1..3

z2i

→ ensure that both sides are smaller than the modulus q
→ leads to large group size
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» Optimizations

zi = mi + γxi

∗ Rejection Sampling: shorter masks→ smaller modulus

∗ Repetitions: shorter challenge→ smaller modulus
∗ Fiat-Shamir: non-interactive range proof

[19/26]
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» Settings

∗ DLOG: improves on Bulletproofs [BBB+18]
∗ Lattice: efficient for large batches
∗ Class Groups: first concretely efficient unbounded integer commitment
scheme without trusted setup

[20/26]
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» DLOG

Pedersen Commitments

∗ G: group with prime order q
∗ g,h ∈ G: generators
∗ x ∈ Zq, r← [0, 22λ]

x ; r = gxhr

∗ based on DLSE assumption

∗ Decomposition: use (honest) homomorphic properties
∗ Efficient range proofs for single x

[21/26]
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» DLOG

Security Parameter 80 128
Range B = 32

Proof size 88% 81%
Prover’s work 12% 11%

Range B = 64
Proof size 89% 80%

Prover’s work 6% 6%

Our work compared to Bulletproofs [BBB+18]. Prover’s work compared in group multiplications.

[22/26]
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» Lattices

[BDL+18] commitments

∗ q ∈ N prime
∗ matrix A ∈ Z(l1+n)×(l1+n+l2)

q

∗ $x ∈ Zn
q,$r← Dl1+n+l2

σ

!x ;!r = A ·!r+ (!0 ‖ !x)
∗ based on SIS and LWE assumption

∗ Decomposition with polynomial trick
∗ Perform range proof for each component
∗ Amortized proofs more efficient than the state of the art in standard lattice
setting

[23/26]
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» Class Groups

Pedersen Commitments

∗ Groups G with hidden order
∗ based on ORD and SI assumption
∗ extraction differs:

x =
z
2!

∗ Same structure as DLOG version
∗ Larger group elements
∗ No bounds on the committed values
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